
pág. 1/28.

SimSEE User Manuals

Volume 6 - OddFace
Optimizador Distribuido De Funciones de Alto Costo de Evaluación.

Distributed Optimizer of High Cost Evaluation Functions..

Ing. Ruben Chaer
April 2019 - Montevideo - Uruguay

Sumario
 1. Introducción...3
 2. OddFace_prepare – Manual de Usuario..6

 2.1. Introducción...6
 2.2. Ingreso (LOGIN)...6
 2.3. Listado de problemas...7
 2.4. Edición de los parámetros de un problema OddFace..8

 a) Tipo..9
 b) Editor de información del Tipo..9
 c) Archivo con definiciones...9
 d) Función Objetivo...9
 e) Definición de Etapas..10
 f) Representación estadística..10
 g) Borrar Historial..11
 h) Panel “Parámetros de exploración”...11

 2.5. Consultas sobre el historial de evaluaciones..13
 3. Detalles de la implementación de los Algoritmos Genéticos en OddFace....................................17

 3.1. Definiciones básicas para manejo de cadenas de ADN..17
 a) ADN-> Genotipo y Fenotipo...18
 b) Descriptores de Genotipos...19

 3.2. Definición de Clases básicas para descripción del problemas OddFace...............................21
 a) TIndividuo..21

 4. Consideraciones adicionales..23
 4.1. Muestreos de Monte Carlo...23
 4.2. Zonas de Indiferencia en la cadena de ADN..24
 4.3. Individuos infactibles y residuo de bits en la cadena de ADN..24

 5. Anexo. Probabilidad de Mutación...24
 6. OddFace-PIG. Programación de Inversiones en Generación..28

 6.1. Introducción...28
 6.2. Parámetros generales...28
 6.3. Configuración de una tecnología...29

 a) Costos fijos como pagos por disponibilidad en la Sala..30
 b) Costos fijos como inversiones puntuales en OddFace-PIG...30

 SimSEE

pág. 2/28.

 1. Introduction.
This document presents the computer application for Distributed Optimization of High Cost

Evaluation Functions (OddFace). OddFace was developed in the framework of the ANII FSE 18-
2009 project "SimSEE platform improvements" which ended in September 2012.

In a nutshell, OddFace is a tool to solve Optimization Problems, consisting of the search for
the parameter set that minimizes the value of an Objective Function or Cost Function. The search is
limited to the values of the parameters within a possible set called in the mathematical jargon as a
Feasible Region or Problem Domain.

OddFace specializes in the search for the minimum in situations where the Cost Function is
of high evaluation cost, understanding as such a function that requires considerable calculation time
to evaluate its value at each point of the search space (given game value of parameters). To do this,
OddFace implements a communication layer between possible Explorer Robots in order to allow
the distribution of the calculation between several machines (or calculation nodes) keeping the
results in a Problem Database (BDP) to which all the Explorers can access, as shown in the scheme
in Fig.1. Each Robot Explorer consults the BDP to know what the others have managed to explore
and, based on that information, it is proposed to
evaluate a new point (value of the parameter
set) of the search space. Since a Genetic
Programming algorithm was implemented for
the main exploration strategy, a value of the
parameter set (or point of the search space) is
called Individual and the Individuals are
classified in the BDP from most to least
successful in increasing order of the estimate
resulting from the cost function. The most
successful individuals are those with the lowest
estimated value of the cost function. Robots

work in an infinite loop until they are ordered to
finish their tasks by repeatedly executing the steps
shown in Fig.2

In the application area for which OddFace was
designed, the evaluation of the Cost Function
generally involves the simulation of a dynamic
system (a system where the actions of the present
impact on the future) operated with certain
operating rules and subject to uncertainty during a
time horizon. To fix ideas, if the problem is the
optimization of investments in electricity
generation, the evaluation of the Cost Function will
mean simulations of steps of time (eg weekly) over
a horizon of tens of years (eg 30 years) considering
different realizations of the stochastic processes
involved (for example, the tributary flows to
hydroelectric power plants, the production of wind,

 SimSEE

Fig. 2: Loop of an explorer.

Fig. 1 Servidor de Base de Datos y Robots.

BDP

R1 R2 Rk

pág. 3/28.

solar, temperature, the price of a barrel of oil, etc.).

In general, the uncertainties are relevant and to obtain significant results, the simulations
must be performed on a set of chronicles of the order of 100 for expected value estimates and of the
order of 1000 or more when it comes to measuring the probability of specific events. The Cost
Function is the expected value of the future cost of operating the system efficiently in the assembly
(set) of simulated chronicles. The greater the number of simulated chronicles, the greater the
accuracy with which the value of the cost function will be estimated.

OddFace makes use of this evaluation in sets of chronicles to carry out a search based first
on a reduced set, that then, on the most successful Individuals, is improved by subjecting them to
new sets of chronicles.

As already mentioned, OddFace was created for its application to the optimization of the
Investment Plan in Generation, but since it was an efficient tool for the optimization of complex
functions, Robots have subsequently been developed to optimize the Annual Maintenance Plan, the
Optimization of LNG Shipment Agencies based on developments carried out in projects of the
Sectorial Energy Fund of ANII that gave rise to the applications OddFace_PIG, OddFace_PAM and
OddFace_OptimA respectively. Another application of OddFace is the one developed in ADME for
the calibration of wind farm model parameters and for the training of neural networks for
generating generation forecasts from climate forecasts.

The main applications OddFace_PIG, OddFace_PAM and OddFace_OptimA are based on
the variation of parameters on a SimSEE Room (a Room is a representation of an electrical
generation system to simulate) and the SimSEE simulation of the system (represented by the
corresponding Room) allows calculation of the Cost of Supplying Demand (CAD) during a given
time horizon (depending on the problem). It is this CAD, which reflects the future cost of the
optimal operation of the system given in a set of realization of the represented stochastic processes
(or chronicles in the jargon used in the electrical sector) that is used as a cost function to evaluate
the Individuals (with the meaning they have depending on whether the problem is PIG, PAM or
OptimA).

The SimSEE platform allows simulations of the electricity generation system of a region or
country. In the simulation it is possible to represent both the generation plants based on fossil fuels
(fuel oil, diesel, etc.) and hydroelectric generation plants (with and without reservoirs), plants based
on renewable sources such as wind or solar, battery banks, etc. It is also possible to represent in the
simulations the interconnections with other electrical systems (for example Uruguay with Argentina
and Brazil). This brief description is made to show clearly that the simulation of a system has
associated the representation of a reality full of details and uncertainties. As already mentioned,
these simulations are performed by simulating many "chronicles" (or "possible stories" or
"realization of the stochastic processes involved", all expressions that mean the same in the context
of this document). Normally, as the main result of the simulation, the expected value of the Demand
Supply Cost (CAD) is obtained, which is the integral of the costs incurred in the time horizon
considered.

An important aspect of the type of optimization problem is that the Cost Function is
evaluated by Monte Carlo simulations and, consequently, what is obtained is an estimate of its
value, an estimate that improves with the amount of draws used. It is also interesting that each
Monte Carlo draw is associated with an evaluation of the function that is independent of the rest and
this has two direct implications: a) allow the distributed evaluation of the different draws and b) be
able to obtain intermediate estimators that are improving with the amount of evaluations that are
carried out.

In formal terms, the cost function to be evaluated is of the type:

 SimSEE

pág. 4/28.

F (X , r) where X ∈D is the vector of optimization parameters of the problem that can take
values in the "Problem Domain" D and r identifies a possible embodiment of the set of
stochastic processes. The function F (X , r) is "the cost" of operating the system if the parameters
are set to X and the simulation is performed with the chronicle (luck, or realization of the
stochastic processes) r .

We are interested in solving the problem of finding "the best" set of parameters X ,
meaning "the best" one that minimizes a cost function that can be built from the evaluations

F (X , r) in the set of r . As an example, (and surely the objective of greater use) is to seek to
minimize the expected value of F (X , r) in the assembly (set of possible embodiments) of the

r .

In the case of the expected value, the objective function to minimize is:

f (X)=〈 F (X , r) 〉r

In the simulation examples of the electric power generation system, the function F (X , r)

is of "high evaluation cost" (power and calculation time) and therefore the results of each evaluation
are stored in the BDP to try to make the most of them and try not to repeat evaluations.

In the example, considering the electric power generation system of Uruguay, a simulation
of 100 chronicles, of the type carried out for investment planning purposes, with a weekly horizon
of 30 years, takes the order of 10 minutes of calculation in a desktop PC. If thousands of possible
expansion plans have to be evaluated, the resolution on a single desktop computer becomes
impossible.

The developed algorithm explores the domain D using different "scanning agents"
(Explorers) that can behave differently. All Explorers feed the results to a shared Problem Database
(BDP). Different Explorers run on different nodes of a calculation network, thus managing to
distribute the exploration among many Explorers working in parallel.

As for the evaluation of a point X ∈D , the implementation allows to indicate a subset of
the assembly. This implies that the same point can be calculated more than once, with different
subsets of chronicles. Each new information is thus used to improve the representation of the
objective function. If the same point is evaluated in the subsets of realizations s1, s2, , sk , the
estimation of the objective function will improve in a series that tends to the true value if each new
evaluation includes the information of the previous ones, f 1 (X) , f 2 (X) ,... , f k (X)→ f (X)

The scan of the domain D is then carried out in a distributed way, by several Explorers,
using the information of all the evaluations shared permanently among the Explorers. Each
Explorer, using an algorithm for estimating a new point (Individual), generates a proposal for a new
evaluation point and performs an evaluation with a set of realizations. This results in an "estimate"
of the objective function at that point. If the point had already been calculated, the new information
is integrated by improving the existing estimate.

The main components of the algorithm are:

1) Communication layer to allow distributed calculation.

2) Calculation explorers of different types.

3) Evaluator of the function F (X , r) . This function evaluator is the part of the algorithm
that needs to be defined for each type of problem to be solved.

4) Incremental improvement of estimates.

 SimSEE

pág. 5/28.

 2. OddFace_prepare – User Manual.

 2.1. Introduction.

In order to use OddFace, it must be installed on a server. This section describes the
OddFace_prepare application that allows the definition of problems for resolution by OddFace on a
calculation server.

At the server level, it is possible to define Users to allow access to the OddFace installation.
In turn, users are grouped into Groups that share the definition of Optimization Problems.

In the server installation you can add applications to solve each type of problem such as:

OddFace_PIG = Generation Investment Planning.

OddFace_PAM = Annual Maintenance Plan.

OddFace_OptimA = LNG Shipping Agenda Optimizer.

In configuring the groups on the server, each group must be granted permission on the type
of problems it can solve.

The “OddFace_Prepare” application allows to edit Problems for their solution with
“OddFace_PIG” and with “OddFace_PAM”,
etc.

 2.2.LOGIN.

Fig.5 shows the user validation and
User Profiles configuration form. The form
has a Profiles selector at the top. The values
displayed in the other parts of the form
correspond to the selected profile. In the
profile selector, you can change the name of
the profile in order to save it with a different
name.

The Username and Password must
be configured to give access to the server. Profile information is saved either by pressing the button

 (reminiscent of the time we were saving on diskettes) or automatically by pressing the button
.

The set of buttons:

 SimSEE

Fig. 4: Server connectivity configuration.

Fig. 3: User Validation Form

pág. 6/28.

 allow you to add a new clean profile, create a new profile from copying the
currently selected one, delete the selected profile and save the profile set to disk.

Fig.4 shows the panel that allows configuring connectivity with the server. As can be seen,
you must indicate the protocol (http or https) and the host (Host field) and the corresponding port
for the protocol (Port, in figure 443 standard port for the https protocol). If it is a server with a
FIXED IP and does not have an assigned name, you can use the FIXED IP field instead of the Host
field (in which case it should be empty). In the URI field: you must put the location of the php
script that receives the OddFace requests. The information in this panel should be provided by who
has configured the OddFace server.

Depending on your location, you
may need to configure a proxy to access
the OddFace server. To do this you must
use the panel shown in Fig.Error: no se
encontró el origen de la referencia. The
proxy information depends on the local
network to which it connects. As a general
rule, if with your internet browser you can
access the OddFace server using the
settings you have placed in the panel corresponding to Fig.5, you should be able to configure
OddFace_prepare to connect as well. If you cannot connect by leaving the Proxy information blank
and do not know the information on it, you can try to check your Internet browser settings to see
what the settings are. The Test / Save button allows you to test if you have configured the Proxy
correctly.

 2.3.Problems
List.

After logging
in, a list of the defined
OddFace problems is
displayed. Fig.6 shows
this screen. In this case,
as you can see, there
are several defined
problems. The first
column of the list
shows the Identification
Number (NID) of each
of the problems. In the example, the problems with NID 245 and 244 have a lighter color than the
rest. This lighter color is due to the fact that these problems are "active" while the rest are
"inactive". The buttons: allow you to “Edit the problem parameters (the

pencil)”, “Eliminate the problem (the cross)”, “Create a new problem by duplicating a problem (the
overlapping sheets)”, “Activate or Deactivate (according to the traffic light be in red or green
respectively) ” and “Explore the results of the problem (the magnifying glass) ”.

If the light is green (problems 244 and 245 in Fig.6) the entire row will be lighter in color
than if it is red. The green light indicates that the problem is “active” and therefore on the server

 SimSEE

Fig. 6: Problems List.

Fig. 5: Configuration of a proxy.

pág. 7/28.

side it will be distributed among the different calculation nodes. If the traffic light is red the
problem is "inactive" and therefore will not be distributed for execution.

When you want to modify any parameter in an existing problem it is advisable to stop the
execution and wait for a while (about 20 minutes) to make sure that all the Cluster browsers have
stopped. In this way, when the execution starts again, the explorers will begin to evaluate with the
new data. If the execution of the problem is not stopped, the new browsers that are triggered will
use the new data, but those that are already running will continue with the initial configuration.

In the first column the problem NID appears, which is an identification number that is
automatically assigned when a problem is created.

In the second column the “dt_creación” appears, which is the date and time at which the
problem was created.

The third column shows the type of problem, with 1 being an "OddFace_PIG" and 2 being
an "OddFace_PAM".

The description of the problem introduced by the user during its editing appears in the fourth
column.

 2.4.Editing the
parameters of an
OddFace
problem.

By pressing the
“Create New” button to create
a new problem or the
“Pencil” to edit an existing
one (see Fig.6) you can
access the edition form of an
OddFace problem shown in
Fig.7.

As you can see, the
form is divided into three
Panels. In the first one there
is the identification of the
problem, in the "Problem parameters" panel there are the main parameters and it defines the
structure of the problem and in the "Exploration parameters" panel there are the parameters that
configure the behavior of the browsers but that do not change the structure of the Problem. It is
important to note that during the execution of a Problem, it is possible to change the parameters of
the “Scanning Parameters” panel, and the evaluations already made stored in the BDP remain valid.
On the contrary, if any parameter of the “Problem Parameters” panel is changed, the structure of the
problem will be changed, so you must stop the execution and delete all the evaluations stored in the
BDP (use the “Clear History” button available for this in the same Panel).

The “Problem NID:” field shows the Identification Number (NID) of the Problem. The
"Creation" field shows the creation date of the problem. These two fields are not editable by the
user.

The “Problem description” field allows the user to enter a text with the description of the

 SimSEE

Fig. 7: Problem editing form.

pág. 8/28.

problem that later appears in the problem list (Fig. 6). It is important that you enter a text that
allows you to identify the problem.

 a) Type.

This selector will allow the user to select among the types of problems that the group to
which the user belongs is authorized to run on the OddFace server.

 b) Type information editor.

This button allows you to edit information specific to the
selected Problem Type. Depending on the type you will have or not
an additional parameter editing form. The detail of the edition of
each type should be read in the corresponding manual. Fig.8 shows
the selector displayed with the types available to date (May 2019).

 c) File with definitions.

Pressing the "Upload" button will allow you to select a file
from your computer to upload to the OddFace server associated
with the Problem you are editing. In PIGSimSEE, PAMSimSEE
and OptimA problems, this file is a SimSEE Room. In other types of problems, the file may contain
other information. e.g. in the “Model Park” problem, the file contains the time series of the wind
station's weather station and the time series of the power generated to calibrate the model
parameters.

 d) Objective Function.

This panel allows to define how the objective function is constructed based on the histogram
of the evaluations F (X , r) by assigning weights to combine the Expected Value, Value at Risk
5% (VaR = Value at Risk) and the Value at Risk Conditioned at 5% (CVaR = Conditional Value at
Risk). With these weights, the Cost Function to be minimized is formed as shown in eq.

C=ρVE ⟨ F (X ,r) ⟩r+ρVaR VaR(F ,5%)+ρCVaR CVaR(F ,5 %) ec.(1) Cost Function.

Where:

• it must be fulfilled that the sum of the weights is equal to 1 ρVE+ρVaR+ρCVaR=1

•
VaR (F ,5 %)=v /P (F (X , r)>v)=5%

• CVaR (F ,5%)= ⟨ F (X ,r)⟩5 %mayores

Fig.9 shows the example of the
evaluation of 1000 chronicles of the
operation of the Uruguayan generation
system for the next 30 years, updating the
values at 5% per year. In summary, using the

 SimSEE

Fig. 8: Available types (May
2019)

Fig. 9: Permanence of F (X, r) and definitions of
VE, VaR and CVaR

pág. 9/28.

parameters ro_VE, ro_VaR and ro_CVaR you can configure the risk aversion you want to consider.
If you do not want to use risk aversion simply set ro_VE = 1 and the other two parameters to zero.
(This is the most common use).

In some OddFace applications, the results are not stochastic (that is, the evaluation does not
depend on a set of simulation chronicles). In those cases, VE = VaR = CVaR, so the risk aversion
configuration is meaningless.

 e) Stages Definition.

While exploration algorithms could be applied to problems in which time does not intervene,
it is very common that optimization involves finding the best set of parameters in a set of time
stages. For this reason, and guiding the solution towards its integration with the SimSEE platform,
the description of a set of "stages" that should be considered as "decision steps" is included among

the parameters. The parameter vector X is composed of a set of sections that describe the

possible parameters of each stage. If the OddFace problem that is being solved does not imply
temporary stages, it is sufficient to consider that there is only one stage.

 First stage start date: The format of this field is year-month-day (yyyy-mm-dd) using four
digits for the year and two digits for the month and day (ISO format). Specify the start date
of the first decision stage.

 Days / stage: This field must have the number of days per stage, that is, the number of days
between decisions.

 Number of stages: This field indicates the total number of decision stages.

 f) Statistical representation.

• N chronicles at a time: It is the amount of chronicles used in each simulation.

• N histogram discretization: The number of points used to represent the histogram of f (x).
(In this first version this number must be equal to "N chronicles"). The idea is that it may be
different, but for simplicity of this first implementation, they are set equal.

• Random Seed: Used to initialize all random number generators in the specific Robots for
evaluating a Problem. The random seed is imposed with a value equal to the value specified
in the form + number of evaluations of the individual. In this way, it will happen that the
first evaluation has seed specified in the form, the second one has as seed the one specified
plus one and so on. This allows all individuals to be subjected in their first evaluation to the
same realization of the stochastic processes and therefore allows to have a better estimate of
the individual's performance (conditioned by its DNA) regardless of “the luck” that they
have to live (they subject them to the same fate).

 g) Delete history.

This button removes all the problem assessments registered in the BDP. It is reasonable that
if you change any parameter that changes the structure of the problem, eliminate all previous
evaluations performed to start over. Before clearing history, it is also reasonable that you have
deactivated the execution of the problem (putting a red traffic light on the problem in the List of

 SimSEE

pág. 10/28.

Problems Fig.6) and that sufficient time has elapsed so that all the Robots that were working on the
problem have tried to communicate with the BDP and be notified that they must stop.

 h) "Scanning parameters" Panel

The "Scanning parameters" panel (green color) contains the parameters that determine the
behavior of the Explorers trying to solve the problem. The changes you make to these parameters
will have an effect on the new browsers. If you want all explorers to change their behavior as
quickly as possible, you must deactivate the problem (change it to red traffic light), wait for the
time it takes to run the simulations plus a few minutes and then activate the problem again. As
mentioned, the parameters of this panel change the behavior of the explorers but do not change the
structure of the problem. For this reason, it is not necessary in this case to clear the evaluation
history.

• ro_GA, ro_EG and ro_MJ: They are the probabilities that the mechanism of proposal of new
exploration point by the genetic algorithm (GA), by gradient estimation (EG) or that the
evaluation is repeated on one of the best points already evaluated in order to improve its
estimate (MJ). In this first implementation, only the GA and MJ possibilities are available.
The implementation of EG is unfinished, so that parameter must remain at 0 (zero). In the
example of Fig. 7, with a 95% probability the next point to explore using the genetic
algorithm is suggested and with a 5% probability the evaluation of one of the points selected
"as best" will be improved. The selection mechanism of the genetic algorithm regulated by
the GA_premio_exito parameter described below is used for the "best" selection criteria.

• Type of Coding: OddFace can apply the genetic algorithm with different ways of coding the
parameters. In these boxes you can specify what type of coding you want to use, and for this
you must enter a value between zero and one in each box in order to choose or combine the
options. The sum of all values must be 1. BINARY, GRAY, UNARY and fosil_agosto 2011
are currently available.

✗ BINARY: each integer optimization parameter X / (X> = Xmin). (X <= Xmax) as the
binary number encoding (X-Xmin). If the parameter is real, it is specified as Y / (Y>
= Ymin). (Y <= Ymax) and the amount of bits to be used for value coding (Y-Ymin).
In the case of the type of PAM problem, all parameters are integers. The crossing
operation of the genetic algorithm involves traversing the binary chains and taking
the 50 bit of the parent A with 50% probability and the 50 bit of the parent B with
50% probability. On the string thus obtained, the mutation operation is subsequently
applied, which implies altering some bits with a given probability. Two individuals
that are "close" from the point of view of the value of the parameters, may be distant
in terms of the differences in the binary chains that represent the DNA. For example,
the binary string 0001 and 1110 may be representing the value 16 and 15
respectively for a parameter that can take values between 0 and 31. The crossing of
0001 and 1110 can for example result in 0000 or 1111 (zero and 31) , with which it
can be seen that crossing two close individuals from the point of view of the
parameters leads to distant individuals.

✗ GRAY: Two consecutive numbers have only one bit difference in the coding. This
code is used to try to reflect the proximity in the binary chains, the GRAY code is
used. When GRAY coding is used, before crossing and mutations, the DNA is
transformed from its BINARY representation to GRAY code. The crossing and the
mutation are then performed (thus generating individuals that are related to their
parents) and then the result is converted from GRAY code to simple BINARY.

✗ UNARY: it would be the equivalent of assuming that the value of the parameter is

 SimSEE

pág. 11/28.

represented by the amount of 1s (ones) in a set of bits. For example, to represent
numbers from 0 to 31 it could be assumed that 310-bit sets are used (it is just an
example). Thus, the amount of 1s (ones) in the 310 bits, divided by 10 is the value of
the parameter. With this type of coding, when performing the crossing operation an
average value is obtained between the two sets of 1s (ones) with dispersion around
that value. The implementation carried out in OddFace is not exactly a representation
by a set of Zeros and Ones, but it was decided to operate directly on the parameters.
Given two individuals with parameters X1 and X2, it is generated by crossing, the

individual X =
(X 1+ X 2)

2
+ z (X 2−X 1) with z∈U (−1,1) and limiting X to the

range Xmin, Xmax that corresponds.
✗ ro_fosil_agosto 2011: In this version of OddFace it is not implemented. It should be

left at zero until this type of coding is implemented.

• GA_premio_exito: This parameter regulates the selection behavior of individuals of the
genetic algorithm. At each step, the explorer selects two individuals as the parents to cross
them and propose a new individual. For the selection of the parents it starts of an ordered list
of the individuals evaluated (registered in the BDP), sorted in descending order of merit
(increasing the value of “f_Objective”). With probability “GA_premio_exito”, the first
individual is selected, and with (1-GA_premio_exito) no. If the first one is not selected, the
same procedure is repeated with the list, removing the first one and so on. This leads to the
selection of the best ones with the highest probability. The probability of selecting the most
successful is GA probexito

, that of the following (GA probexito
−1)GA probexito

 and by induction,

the probability of selecting the k−ésimo individual in the list sorted by increasing order
of success is: (GA probexito

−1)
k−1 GAprobexito

.

• GA_prob_mutación: After the parents have been selected and crossed by a simple random
combination of their genes, the "mutation" mechanism that inverts bits of the binary chain
that represents the individual's DNA is applied. "Prob. Mutation ”is the probability of bit
mutation of the DNA chain. As a problem has a longer DNA chain, the probability of a
mutation occurring is greater for the same parameter “Prob Mutation”. In the
implementation, given the dimension N of the DNA bit string, a random source is
constructed that determines the amount m of mutation sequences to be applied as

pN (m)=Cm
N PMut

m
(1−PMut)

(N −m) . Given a DNA string (bit sequence) this source is used to

determine the amount m of mutation sequences to impose. Each mutation sequence is
applied by selecting a bit with uniform distribution in the bit string and inverting it. This
process is repeated m times. It may be that a bit previously inverted is inverted again.

 2.5.Consultations on
the history of
evaluations.

The evaluation history is
stored in a table in the BDP
shared by all calculation nodes.

To consult the history

you can use the button of
the list of problems (Fig.6).

 SimSEE

Fig. 10: Results inquiry form.

pág. 12/28.

Pressing that button displays the query form shown in Fig.10. The "SQL Query" panel allows the
editing of the parameters of an SQL query to be performed on the problem evaluation history table.
As you can see, the fields "nid", "adn", "f_Objective", and "cnt_evaluations" are selected by default.
In the edit box below, you can add additional fields. The fields in the table are listed in the box to
the right of the same panel.

The meanings of the fields are as follows:

 "nid", unique identifier number of the evaluated point.

 “adn”, is the individual's DNA (binary number resulting from crossings and mutations) and
is shown in hexadecimal code.

 "f_Objetivo", value of the objective function at the point evaluated.

 "dtc", date and time of the first evaluation of the point.

 "dtu", date and time of the last evaluation of the point.

 "cnt_evaluaciones", number of evaluations made of the point.

 “f_VE ”,“ f_VaR ”,“ f_CVaR ”correspond to the expected value, the Value at Risk 5% and
the Value at Risk conditioned to 5% of the set of chronicles in which the individual was
evaluated.

 "F_Objective" is the value of the objective cost function of minimization.

 “F_MIN” and “f_MAX” are the minimum and maximum cost values corresponding to the
set of chronicles evaluated.

The FROM box has the name of the problem history table and cannot be edited.

The WHERE box has the "filter" and by default it has 1, which means that all records will be
selected. For example, if "cnt_evaluations"> 4 were placed in the WHERE box, only those points
that have at least 5 evaluations will be selected.

The ORDER BY box indicates the order in which the results will be sorted. In the example,
they are ordered in descending order of the unique identifier number (nid DESC), which means that
they will appear in reverse order of creation, that is, at the beginning the last ones created.

The boxes to the right of LIMIT set the offset from the first record and the number of
records to download. In the example in the figure, the values are 0 (zero) displacement and 10,000
(ten thousand) records.

Once the parameters that allow you to form the SQL query have been established, pressing
the "Execute query -> XLT_file" button sends the query to the server and the selected records saved
in an .xlt file will be received (text file with
numbers with a "." as a decimal separator and
separated by tabs).

The "Download individual" panel
allows you to specify the "NID" of the
individual you wish to download. By pressing
the "Download Individual" button, the DNA of
the individual identified by the specified NID
is downloaded and the Evaluation Robot is run
locally to decode the DNA and create the
corresponding representation. For example, in

 SimSEE

Fig. 11: Example of writing in the text output
when downloading an Individual.

pág. 13/28.

the problems of the PIGSimSEE type, the “oddface_pig” application is executed locally to create
the SimSEE room corresponding to the downloaded individual.

To do this, a version of the application corresponding to the type of problem being solved
must be installed on the computer on which "OddFace_prepare" is running so that it can be run on
the downloaded DNA and create the corresponding representation. When this query is made,
the messages on the Oddface console screen should be verified, as the application that is running
can write relevant information or report a failure. In the case of PIGSimSEE problems, the place
where the Room that represents the individual was created is written on the console and the total
amount of investments updated that is not represented in the Room. So that you can read the outputs
of the console, after finishing it, it remains waiting for the user to press "Enter", after which you can
return to the query form.

The room is downloaded to a folder in the temporary directory (its location depends on
whether it is Linux or Windows), with the original name of the room concatenated with the text:
"_oddface_". Fig. 9 shows an example of individual discharge in the case of a PIGSimSEE
problem.

Each type of problem must implement where the decoded Individual is stored and how he
notifies it in the text terminal.

The "DNA Analysis" button allows you to see the binary chain of an individual. For this,
you must enter the NID of the individual you want to see and then press that button. It may be
necessary to click on the text box to display the results. Fig. 12 shows an example of the result of
pressing that button. This functionality was implemented mostly for purposes of code debugging
and research on how to code problems. In the current use of OddFace you hardly need to use it.

First, the string is shown as it is in the database, then the decoded values are shown and then
the re-encoded DNA, but "cleaning the redundant bits".

A main representative of the set of DNAs that are decoded with the same result is obtained. The
three strands of DNA shown should be the same if the redundant bits are not operated at any time
and that is why this functionality is only for debugging the implementations.

 SimSEE

Fig. 12: DNA analysis

memo_ADN
nbits_Justo: 403, nbits_Resto: 13
000000100000000000001000000000000100010000000000000000100000000000000010000010000000000000
000000000000000010000000001000000000001000101000001000010000100000000000000000001100000000000100000000000100000000010100101000000000
000000001001000000100000000100000000000001000001000000010000000000001000000000000010010010000100010000000010000000000000000000000001
10111110000000000000
, 0, 2, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 8, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 0, 2, 5, 0, 1, 1, 1, 0, 0, 0, 16, 1, 0, 16, 0, 0, 8, 0, 0, 5, 5, 0, 0, 0, 4, 4,
16, 0, 0, 1, 0, 0, 2, 4, 0, 4, 0, 0, 4, 0, 0, 8, 2, 2, 2, 1, 0, 2, 0, 0, 0, 0, 0, 27, 5
000000100000000000001000000000000100010000000000000000100000000000000010000010000000000000
000000000000000010000000001000000000001000101000001000010000100000000000000000001100000000000100000000000100000000010100101000000000
000000001001000000100000000100000000000001000001000000010000000000001000000000000010010010000100010000000010000000000000000000000001
10111010000000000000
000000100000000000001000000000000100010000000000000000100000000000000010000010000000000000
000000000000000010000000001000000000001000101000001000010000100000000000000000001100000000000100000000000100000000010100101000000000
000000001001000000100000000100000000000001000001000000010000000000001000000000000010010010000100010000000010000000000000000000000001
10111010000000000000
nid: 474876
cnt_evaluaciones: 1
f_VE: 12773.573529928
f_VaR: 13824.4575875048
f_CVaR: 14003.188216767
f_Objetivo: 12773.573529928
f_Histo: [100| 11929.158272361; 11968.7777829425; 12005.0194718083; 12017.1565708214; 12032.3833775757; 12046.5615344235; 12081.1109117633;
12085.7349566305; 12117.7680887019; 12169.1434718785; 12190.7753051286; 12201.7096846919; 12231.4795699569; 12315.7410197828;
12327.1029200248; 12334.0501517377; 12351.1219800798; 12353.4087861756; 12354.9507164018; 12375.0199592596; 12377.4724869632;
12381.5574325203; 12384.2276541194; 12389.1539730761; 12392.1638360465; 12394.1115757286; 12402.3142867478; 12403.4885837379;
12422.1193583345; 12424.1361327088; 12425.1697896231; 12434.3190790531; 12453.4059284225; 12460.5341698898; 12466.7354772204;
12483.5152230585; 12495.9436812823; 12496.8126665566; 12517.6572022949; 12524.4382285267; 12550.6358545089; 12574.6108930083;
12580.7697237213; 12588.3279631149; 12598.2770233897; 12606.5198716438; 12609.5334123862; 12652.5680431197; 12653.752998765;
12659.1172450018; 12682.2999383909; 12710.1392650936; 12720.7142861705; 12734.1520370324; 12780.5459331089; 12805.2450617702;
12826.9862398139; 12830.0526367755; 12841.484460638; 12850.7652707411; 12864.5032420755; 12875.5479192703; 12885.3947376688;
12908.5903672232; 12920.4805401952; 12923.2470005674; 12923.4269463457; 12956.4132878106; 12975.0591853484; 12990.465039251;
13004.9011967463; 13007.6453164042; 13021.9359964188; 13022.7502548968; 13025.8926802639; 13035.1708786129; 13072.4518315991;
13085.142761231; 13101.9221390161; 13115.6868438361; 13137.7838024691; 13175.402268806; 13181.2429776286; 13184.310983076;
13267.5292241882; 13319.5517343409; 13338.6656450099; 13341.0955374053; 13347.631333053; 13430.4558515479; 13612.0657577478;
13663.6720406938; 13754.6268974598; 13793.6120177385; 13824.4575875048; 13913.9685338068; 13928.4262863502; 13973.9849927549;
14143.9072811609; 14234.3846190244]

pág. 14/28.

A case is shown in Fig. 12 in which nbits_Justo: 403, nbits_Resto: 13. In this example, the
minimum amount of bits needed to encode an individual is 403 bits and the remaining 13 bits are
the leftovers to encode DNA strands with 16-bit word sequences.

 SimSEE

pág. 15/28.

 3. Details of the implementation of the Genetic Algorithms in
OddFace.

This section describes the implementation of the Genetic Algorithms in OddFace at the level
sufficient to be able to understand and make modifications to the code.

The implementation is divided into two Units (Pascal Modules) that are “utipos_ga” in
which the basic types of data are defined for the representation of DNA chains and Genotypes and
“uoddface” in which the base classes are defined for the description of OddFace optimization
problems.

 3.1. Basic definitions for handling DNA strands.

The Pascal unit "utipos_ga" contains the basic definitions for the management of Genetic
Algorithms. In this section, “Bold italics” will be used to write textual definitions of the Pascal
source code.

The first thing to highlight is that in the implementation the DNA chains are represented by
vectors of BITs organized in 16-bit words (Pascal WORD type). That is, every DNA chain is stored
as 16-bit word vectors.

In the Interface, the type is defined:

TCadenaADN = packed array of word;

Thus defined, an instance of TCadenaDNA will be a vector of length to define of data of the
Word type (16 Pascal bits). The word “packed” tells the compiler to locate all the bytes
“contiguously”, providing that we can access them directly. Likewise, the implementation always
sought access through the structure of the vector, which should not be relevant if the bytes are
contiguous in memory.

With this definition of DNA, if you want to access the bit k of a string, you have to access
the data (k div 16) of the vector and within that data the bit (k mod 16). To access the bit (k mod 16)
you have to build a bit mask that has 0 in all the bits except in the position (k mod 16) to achieve, by
means of an AND binary operation, isolate the bit you want to access .

These constants are defined:

• BIT_MAS_SIGNIFICATIVO = $8000; This constant serves as a mask to isolate the most
significant bit in a 16-bit data.

• BIT_MENOS_SIGNIFICATIVO = $0001; This constant serves as a mask to isolate the
least significant bit in a 16-bit data.

Then, given a vector of DNA data to read the "k" bit (assuming k: 0 .. NBits-1) we would have to
do:

mascara_de_bit = BIT_MENOS_SIGNIFICATIVO shl (k mod 16);

jw:= k div 16;

 SimSEE

pág. 16/28.

Bitk:= ADN[jw] and mascara_de_bit;

Where: the "shl" operator is Pascal's standard (read Shift Left) and has the effect of making a binary
shift to the left of the first parameter (k mod 16) positions.

The "div" operator is Pascal's standard and calculates the integer part of the division.

The "mod" operator is Pascal's standard and calculates the remainder of the division.

To set the Bit k of the DNA chain to ONE, the operation would be:

ADN[jw]:= ADN[jw] or mascara_de_bit;

To zero the bit k of the DNA string, the operation would be:

ADN[jw]:= ADN[jw] and NOT(mascara_de_bit);

To reverse bit k of the DNA string the operation would be:

ADN[jw]:= ADN[jw] xor mascara_de_bit ;

 a) DNA-> Genotype and Phenotype.

All the information contained in the chromosomes is known as genotype, however this
information may or may not be manifested in the individual. The phenotype refers to the expression
of the genotype plus the influence of the environment.

The DNA Chain is a representation of the Genotype and totally characterizes the individual
from the genetic point of view. The subsequent experience of each individual in their environment
may lead to differentiate individuals who are identical from the genetic point of view. For example,
two twins with the same genetic information are then differentiable by external features.

The terms "genotype" and "phenotype" were created by Wilhelm Johannsen in 1911. The
genotype is the complete hereditary information of an organism, even if it is not expressed. The
phenotype is a property observed in the organism, such as morphology, development, or behavior.

By observing the DNA chain, the genotype can be known, observing the appearance and
performance of the organism in its environment, the phenotype can be known.

The physical properties of an organism are those that directly determine its chances of
survival and reproduction, while inheritance of physical properties only occurs as a secondary
consequence of gene inheritance.

Mapping a set of genotypes to a series of phenotypes is sometimes called a genotype-
phenotype map. In the case of application in OddFace on the SimSEE platform, the genotype of an
individual determines everything necessary to be able to simulate and evaluate the performance of
that individual, that is, it sets all the parameters of a SimSEE Room to do the simulation and obtain
the Future cost of operating the system as a performance index. When performing a simulation, a
set of chronicles (Monte Carlo samples) will be selected and so two evaluations of the same
individual with two different sets of chronicles can lead to two different evaluations of the
performance of the same individual. Thus, in the case of application, it involves a simulation
platform that simulates "the environment" in which the "individual" (characterized by his genotype)
has the opportunity to perform and thus show his phenotype.

This representation, adjusted to the reality that the same genotype can run with different luck
during the evaluation, can be considered as a “robust” behavior of nature, in which an “absolute

 SimSEE

pág. 17/28.

leader” is not defined but that there is a set of individuals that they are "the best", but depending on
the life of each one, there are some genetics that are better, but in another circumstance the
condition of being better may be reversed. This somehow prevents a UNIQUE genetics as a winner,
and is important so that the adaptive capacity of organisms is not lost. But thinking of the objective
of finding the optimal individual as the solution to a specific problem that has a clear specification
(not changing external conditions), this influence of the "luck" of the individual during the
evaluation is rather a negative aspect of the AG. In this first implementation of OddFace v1.0 it has
been implemented that "there is no control" over the individual's fate and therefore, the same
genotype, evaluated twice can have differentiation. In the analysis of the test cases performed for
this implementation, this topic is deepened and an alternative implementation is proposed, which
although it is not adjusted to reality, is considered better for the resolution of the type of test
problems performed.

 b) Genotype Descriptors.

In the Unit "utipos_ga" the class is defined:

TDescriptorGenotipo = class

 nombre: string; // identificador del parámetro

 nbits: integer;

 constructor Create(nombre_: string; nbits_: integer);

 procedure codificar_ADN(var adn: TCadenaADN; var offset: integer; var mask: word; var Genotipo); virtual;

 function decodificar_ADN(var Genotipo; var adn: TCadenaADN; var offset: integer; var mask: word): boolean; virtual;

end;

That class is used to describe a Genotype, or parameter of the individual. For example, in the case
of PAM, given a Maintenance Order for a unit (For example: “Remove the 6th Central Batlle Unit
for 15 days for maintenance between 1/1/2012 and 1/3/2013) the genotype could represent for that
order the start date of maintenance.

In the Genotype descriptor:

• The "name" property allows us to clearly identify which parameter it refers to (for example,
it could be the maintenance order number).

• The "nbits" property indicates the number of bits needed to encode the possible range of
parameter variation.

• The constructor allows us to create an instance of the descriptor.

• The “codify_DNA” procedure receives as a parameter a DNA chain and the offset to the
locker in which the Genotype coding begins. The "mask" parameter is a 16-bit binary mask,
all zero, except in the position of the first bit of the Genotype in the DNA position [offset].
When coding the genotype, the binary representation of the Genotype parameter is copied,
from the bit determined by “mask” within DNA [offset] and the “offset” and “mask”
parameters are returned so that they are left pointing to the bit following the last used, within
the chain to encode the Genotype. Initially setting offset = 0, mask = 1, and calling the
procedure codificar_DNA on the vector of all Genotypes, the total coding of the individual
is obtained in DNA.

 SimSEE

pág. 18/28.

• The "decode_DNA" function allows the genotype to be read from a DNA chain. The
meanings of the “offset” and “mask” parameters are the same as those explained in the
previous paragraph and allow reading from the bit string, those corresponding to the
particular Genotype and modify the parameters to prepare them so that the next genotype
descriptor can do his job. The result of the function is TRUE if the binary decoding did not
need to be adjusted to cover the range specified for the parameter and FALSE if an
adjustment had to be made. To better understand the meaning of TRUE or FALSE as a
result, read the description of the handling of Integer Genotypes below.

As you can see, in this generic class, nothing is said about the type of data of the “Genotype”
parameter, it is only assumed that in the memory location pointed by that parameter, nbits can be
read or written.

Refined classes of TDescriptorGenotype are defined, to facilitate the handling of Boolean, Real and
Integer parameters.

TDescriptorGenotipoBooleano. In this case, simply uses the generic class by setting nbits = 1.

TdescriptorGenotipoEntero. In this class the parameters “k_min and k_max” are added that must
be passed in the constructor and set the range allowed for the parameter. The amount of bits is
calculated in the constructor and set so that nbits is the smallest integer such that (k_max-kmin) <=
2 ^ nbits. Suppose it is an integer parameter called "Path" that can take the values 1, 2 or 3. Then,
when creating the instance of the genotype descriptor we would call the constructor like this: path:
= TdescripotrGenotipoEntero.Create ('Path', 1 , 3).
As a consequence of this call, a descriptor will be created, in which nbits = 2. This leads to the
existence of 2 bits in the DNA strands that are to represent this genotype. As 2 bits can represent 4
values and only 3 are needed in this case, there is more than one binary encoding that will end up
giving the same genotype. This is where the result of the “decode_genotype” function is involved.
In the implementation it was decided to directly perform the binary decoding of the "bit segment" of
the DNA to an integer obtaining a number between 2 ^ nbits-1. The value thus obtained is added to
k_min to obtain the genotype value, if the result is greater than k_max, it is adjusted to k_max and
FALSE is returned to indicate that an adjustment had to be made. If the result is TRUE, it was not
necessary to make any range adjustment.

TDescriptorGenotipoReal. This refined class of Tdescriptor Genotype is useful for handling Real
parameters (floating point). The constructor allows to pass as parameters, the genotype name, the
minimum and maximum value of the parameter and a “nbits” parameter that determines the
fineness with which the range (x_max - x_min) will be discretized in the representation. The range
(x_max - x_min) will be represented by 2 ^ nbits points being therefore the distance between the
points of discretization dx = (x_max - x_min) / (2 ^ nbits -1). As you can see, the real parameter is
represented by a countable discretization, so it is essentially treated as if it were an integer
parameter.

 SimSEE

pág. 19/28.

 3.2.Definition of basic classes to describe the OddFace problem.

The “uoddface” Pascal unit contains the definitions of the Pascal Classes useful for the definition of
OddFace problems.

The basic classes are:

• TIndividuo. This Class defines the basis from which to derive classes that can describe
individuals from each specific problem. An individual differs from another in essence by its
Genotype, represented in its DNA chain. The Individual is associated with a Problem and it
is within the framework of that problem that it will be evaluated and depending on its
performance it will be classified as more or less apt.

• TProblema. This Class defines the basis from which to derive classes for specific problems.
The Problem contains the description that allows to evaluate the performance of the
individuals associated with the problem. For example, in a PIG (Generation Investment
Planning) problem, the Problem contains the information to generate the SimSEE Room
from a given investment plan (ie an individual) and to evaluate the cost resulting from that
investment plan.

• TExplorador. This Class generalizes the search mechanism for individuals. Its main method
is to "propose a new individual". From this basic class it is possible to derive refined
explorers with different strategies to propose new individuals.

• TExploradorGenetico. This class is a TExplorador refinement. The mechanism to propose a
new individual is in this class the one of the Crossing of two individuals selected from the
group of individuals already evaluated of the problem according to a performance index to
obtain the DNA of the new individual. The DNA resulting from the crossing may in turn
undergo changes due to the Mutation operation.

• TExploradorMejorador. This class is a TExplorador refinement. The mechanism to propose
a new individual is to select one of the best ones already evaluated and simply repeat the
evaluation with "other luck" to improve the evaluation of the individual.

The solution of a problem is to activate explorers that are looking for the best individuals (those that
minimize the objective function of optimization).

 a) TIndividuo.

The TIndividuo class has the properties:

• Problema: TProblema; This variable stores a reference to the problem to which the
individual belongs.

• tipo_COD: integer; This property determines the type of encoding in which the binary
representation is stored for the Cross and Mutation operations. The values can be: 0, 1 or 2
depending on whether the encoding is: BINARY, GRAY or UNARY.

• nid: integer; That is a unique identifier of the Individual in the table of evaluated individuals
associated with the problem to which the individual belongs. If the value is -1 (minus one) it
means that a unique identifier has not yet been assigned to the individual. Unique identifiers
must be requested from the database server.

 SimSEE

pág. 20/28.

• XR: TVectR; Real genotypes vector. It contains the set of real values that represent the real
parameters of the individual.

• XE: TVectE; Integer genotypes vector. It contains the set of integer values that represent the
integer parameters of the individual.

• ADN: TCadenaADN; Genotype representation (XR and XE) by a bit string.

• f_VE, f_VaR, f_CVaR, f_MIN, f_MAX, f_objetivo: NReal; These variables store the estimates
made based on sets of chronicles (Monte Carlo samples) of the expected value of the cost
function, which is exceeded with probability 5%, of the expected value of the highest 5% set
of costs, the minimum value of the sampled set, the maximum value of the sampled set and
the value of the objective function to be minimized respectively. The target value is
composed as a linear combination of f_VE, f_VaR and f_CVaR according to the weights
specified in the problem definition. These estimators are obtained for each evaluation
(performed with a number of Monte Carlo samples) and if the individual is evaluated more
than once the averages of the estimators obtained in each evaluation are stored in the
variables f_VE, f_VaR, f_CVaR, f_objective, and in the variables f_MIN, f_MAX the
minimum and maximum values estimated in each evaluation are stored.

• cnt_evaluaciones: integer; Number of times this individual was evaluated. Each evaluation
consists of performing a number of samples of the cost function defined in the problem
specification. The same individual may have been evaluated more than once and the
cnt_evaluaciones value realizes that.

• f_histo: TVectR; This property is of the real vector type and directly stores the value of the
cost function obtained by each Monte Carlo simulation performed during an evaluation. For
example, if in the specification of the problem it was established that each evaluation is
performed on 100 chronicles (samples) then the f_histo vector will have the 100 values
obtained during the simulation. In the case where an individual has been evaluated more
than once, the f_histo vector stores the average of the f_histo values that each evaluation
would have independently if it were the only one.

 // crea un nuevo individio "limpio".

 constructor CreateNew(problema_: TProblema);

 // crea un individuo con un ADN dado poniendo a cero todos los demás parámetros.

 // es útil para decodificar la cadena.

 constructor CreateFromADN_HexStr(problema_: TProblema; ADN_HexStr:string);

 // crea un individo desde un record de la DB

 constructor CreateFromRec(problema_: TProblema; r: TDataRecord);

 // comunica el resultado al la DB

 procedure ComunicarResultado;

 SimSEE

pág. 21/28.

 // convierte el ADN a codificacion GRAY

 procedure toGray;

 // convierte el ADN a codificación BINARY

 procedure toBinary;

 function ADN_AsBinaryStr: string;

 procedure Free; virtual;

 end;

 4. Additional considerations.

Two important aspects to consider when developing a new type of Problem Explorer in OddFace
are described below.

 4.1.Monte Carlo Sampling.

The first observation is that, since it is the search for a minimum of a function that is evaluated by a
set of Monte Carlo draws by simulation, and since the search for the minimum is definitely the
comparison between the evaluation at different points of the search space, the techniques of
variance reduction by synchronized sampling are valid for this case. In other words, it would be
desirable to compare the values for the same set of embodiments of the stochastic processes, or at
least that, if possible, that is, in those aspects that the stochastic processes involved do not depend
on the evaluation point, be maintained for both evaluations.

As an example, in the case of PAM, the accidental breakage of the machines should remain
unchanged as well as other processes such as wind speeds or flow rates for hydroelectric power
plants, so that they do not add differences to the comparison.

To achieve this improvement, it would be sufficient to introduce an order in the random seeds with
which the points are evaluated.

If the problem were solved by admitting a single evaluation of NChronicles for each individual, it is
clear that the best solution would be to use the same random seed for all evaluations. As the
generation of random numbers in SimSEE is implemented, from version 2.63 "Anarchy" (the
random seed) determines the generation of random numbers of each component of the simulation
independently, with which, when evaluating two individuals , which ultimately means optimization
and simulation of two SimSEE Rooms, if the same random seed is used, the generation of
randomness in each component that remains unchanged in both Rooms will be identical.

In the management of the realizations that are used during the simulation, it must be ensured that,
for the same number of evaluations, the Individuals were tested on the same sets of realizations in
what can be maintained, even if the individuals are different. In the implementations of
OddFace_PIG, OddFace_PAM and OddFace_OptimA est it is achieved by imposing that simulation
seeds are calculated from a Seed_Mother (equal for all) plus the evaluation number. Thus generated,
a seed dependent on the evaluation number, to maintain internal coherence, is responsible for

 SimSEE

pág. 22/28.

SimSEE.

 4.2.Areas of Indifference in the DNA chain.

When selecting the possible ranges of the parameters and how they affect the problem under
evaluation, care must be taken not to leave Indifference Zones.By areas of indifference we refer to
regions of the Domain that when translated into the Problem (eg when creating the SimSEE Room
in the case of OddFace_PIG) are Individuals, for all intents and purposes, equal. Indifference Zones
slow down the convergence of the Genetic Exploration algorithm. At the level of the DNA chains
the individuals are different, but at the level of the problem to be solved they are identical and it
ends up creating crossings about Individuals that do not generate really different explorations.

 4.3.Unfeasible individuals and bit residue in the DNA chain.

In the implementation of OddFace, when proposing a new individual, it could happen that it
is unfeasible, indicating that it is not possible to perform the corresponding simulation to assess the
cost of the individual. It should be implemented in the Explorer itself, a function that, given an
Individual, perform the necessary checks and determine whether or not it is feasible. The fact that
there is the possibility of generating Unfeasible Individuals generally indicates that the way of
coding the parameters of the Problem could be improved, thus avoiding the generation of
Unfeasible Individuals. Just as an example, suppose a problem with two parameters x1∈[0,1]
and x2∈[0, 1] but for the individual to be feasible x1+x2<1 must be met. If it is thought that
individuals will be allowed to vary freely x1 and x2 50% of the region to be explored will
correspond to unfeasible individuals. In this example it would be preferable to make a change of
variable and instead of x2 considering r∈[0, 1] as a parameter and putting the calculation into
the problem coding x2=x1r , thus avoiding regions with infeasible individuals.

 5. Annex. Probability of Mutation.
In the problem editing form (see Fig.7) it is possible to define the probability of mutation.

This parameter is used to build a random number generator with the distribution

pN (m)=Cm
N PMut

m
(1−PMut)

(N−m) eq.(2).

where N is the length of the problem's DNA chain (number of bits) and PMut is the
probability of mutation specified in the form. With the probability density of eq.2 the number of
mutations m to be performed is generated. These mutations are performed randomly on the bit
string sequentially, so a bit inverted in one of the mutations can be reversed again in the following.

Given a sequence of N bits, if in step 1 any of the bits (with equal probability) is selected
and reversed, the probability of inverting a given bit is

p1=
1
N

. If any of the bits is selected again

in step 2 and reversed, the probability of having inverted a given bit in the sequence of steps is

p2=p1(1−
1
N

)+(1−p1)
1
N

Similarly, you can write the probability that at the end of the step k+1 a given bit will be
inverted in the sequence of steps such as:

 SimSEE

pág. 23/28.

pk+1= pk (1−
1
N

)+(1−pk)
1
N

=pk(1−
2
N

)+
1
N

pk+1= pk (1−
2
N

)+
1
N

eq.(3)

Eq.3 as its point joined pk+1 =pk=
1
2

 by what making the variable change zk=pk−
1
2

we have the equation

zk+1=zk(1−
2
N

)
eq.(4).

Eq.4 has a solution
z k=(1−

2
N

)
k

z0

 with z0=(p0−
1
2
)=−

1
2

From the above you can write the probability that after m steps a given bit will be
inverted (that is, it has been inverted an odd number of times) as:

pm=
1
2
−(1−

2
N

)
m 1

2
=

1
2
(1−(1−

2
N

)
m

)
eq.(5)

The possible values of m are between 0 (cero) and N . Fig.13
 shows that eq.5 is visually, quasi-independent of N when plotted against m/N

Then, the expected value of the inverted bits when applying m sequential mutations will
be:

 SimSEE

Fig. 13: Probability of mutation of each bit in a sequence of m mutations.

pág. 24/28.

Npm=
N
2

(1−(1−
2
N

)
m

)
eq.(6).

Cm
N
=

N !
m!(N−m)!

 SimSEE

pág. 25/28.

 6. OddFace-PIG. Generation Investment Programming.

 6.1. Introduction.

The use of the OddFace tool is explained in the OddFace Manual. The purpose of this
document is to describe the OddFace-PIG application that allows the problem of optimization of the
investment plan in generation to be defined on OddFace.

To evaluate an investment plan in generation, the user must provide a SimSEE Room and
indicate which Actors of that Room are those on which it is possible to install new units. For this,
the possible technologies are configured on which it is possible to expand (eg Wind, Solar, Open
cycle turbines) and the time horizon
in which it is possible to make
decisions as well as the frequency
with which it is possible to take
them.

To define a problem of type
OddFace_PIG you must use the
OddFace_Prepare tool. In the User
Manual of that tool you will find
how to configure User access and
how to start creating a new problem.
When you start creating a problem, a
form will open as shown in Fig.14.

 6.2.General Parameters.

In this problem editing form (Fig.14),), you must select the PIGSimSEE type of problem in
the “Problem Parameters” Panel, in the "Type" selector. Once the type of problem has been selected
with the "Upload" button, select the SimSEE Room file (file with extension ".ese") and the upload
of the Room to the server will begin.

Before uploading the room, identify the Actors on which you want to perform the expansion.
You must enter the name of those Actors as technology options in the edition of the specific
problem parameters. You must ensure that these actors have only one Units Record with ZERO
units installed with a date prior to the start of the simulation. This is important because if you leave
records with units installed in the Actors that are an expansion option, then you will not be able to
differentiate between the units installed by the optimizer and those that already existed in the Room.

 6.3.Configuration of a
technology.

Pressing the "Edit specific
information of type" button in the
problem editing form (Fig.14) opens the
technology editor that will be the
investment options shown in Fig.15.
This list is initially created empty and

 SimSEE

Fig. 14: Form for editing an OddFace problem.

Fig. 15: List of investment options technologies.

pág. 26/28.

the “Add New” button introduces the technologies that are investment options.
In Fig.15 it is shown that three technologies were configured. "Exp_Eolica", "Exp_SolarPV"

and "F_50MWx8h". These are just examples for a SimSEE Room in which there are Actors with
those names intended to expand the generation based on installing units in them.

In each line of the list there is a keypad: . The "pencil" allows you to edit the

technology parameters, the "two sheets" allow you to add a new technology to the list by copying
the parameters of an existing one, the "cross" allows you to delete a technology and the "traffic
light" allows you to activate or deactivate the technology (only the active ones are considered in the
optimization).

Keep in mind that if you change any parameter of a technology or activate or deactivate or
delete or add technologies you will be changing to the structure of The Problem and therefore if it
was already running you should delete the
evaluations you already made using the
“Clear History” button of the problem
editing form (Fig.14).

Pressing the “Add New” button in
the list of technologies (Fig.15) or cloning

an existing one with the button will

open the form for editing a technology
shown in Fig.16.

In the field "Technology (SimSEE
Actor):" you must enter the name of the
SimSEE Actor that will be used to expand
the generation based on installing
Generation Units by adding the
corresponding records in the Actor.

The "Construction Months" field allows you to define the estimated months that will pass
from the investment decision until the projects of the type of technology in question are put into
operation. The use of this field is optional. If you specify a value of 0 (Zero) you will simply be
representing that the units enter at the same moment the decision is made. If you specify a value
greater than zero, you should keep in mind that if the investment is set up as specified in section
6.3.b , then the investment is made on a date and the new generation will enter after the specified
number of months has elapsed.

The field “Years of useful life” allows you to specify the useful life of a power plant of the
technology in question. In Fig.16, 20 years were specified, which implies that when OddFace adds a
file with technology units in the Room on a given date, on the same date 20 years later, it modifies
the units record to represent the withdrawal of the system units.

The “Technology cost” Panel allows you to specify the fixed costs associated with the
installation of Investment Units (UI) of the technology and is explained in detail in section 6.3.b

In the Panel “Variable restrictions” you must limit the decision variable (the number of units
to be installed).

You must specify the "First possible date for the decision" and the "Last possible date for
decisions". These two fields act as an additional temporary filter to the definition of the Decision
Stages and can only restrict the time horizon defined by the Stages.

In the “Max. IU / time” the user must specify the maximum number of units of technology
that is reasonable to be installed at a decision stage. For example, if the demand growth of the

 SimSEE

Fig. 16: Formulario de edición de una tecnología.

pág. 27/28.

system is 100 MW per decision stage and an IU represents a 50 MW wind farm, the demand
increases will be covered with 4 parks per stage (assuming a capacity factor of 0.4) and assuming
that in the same stage you can remove previous parks a fair value could be 8 and to have some slack
you could configure “Max. IU / time = 10 ”.

The “Max. Active UI ”specifies the maximum amount of active investment units that is
reasonable in the system. As an example, if the Maximum Demand is 2000 MW and if an IU were a
50 MW wind farm with a capacity factor of 0.4 it would not make sense to keep assets much more
than 2000 / (50 * 0.4) = 100 Investment Units.

It is important to reduce the ranges of the variables as much as possible, given that the
greater the range, the more difficult the optimization algorithm will have to explore the domain of
possible solutions and therefore the calculation time will be greater.

The “UG / UI” parameter determines how many Generation Units are incorporated into the
corresponding Actor of the SimSEE Room for each Investment Unit. In the example of Fig.16 el
valor de 50 implica que por cada Unidad de Inversión de OddFace, the value of 50 implies that for
each OddFace Investment Unit, 50 new generation units will be installed in the “Exp_Eolica” Actor
of the Example Room. As in this Room the Actor Exp_Eolica is configured with 1 MW units, a UI
corresponds to 50 MW installed in the Room.

 a) Fixed costs such as payments for room availability.

The Actors within the SimSEE Room have a field (in their main form or in the dynamic
parameter records) that allows specifying a payment for availability in USD / MWh (dollars per
MW and per hour available). This payment for availability (sometimes called Payment for Power)
appears in the Room as a cost. When adding units to the Actor, the increase in fixed system costs is
automatically being considered as this availability payment is applied.

This way of considering fixed costs is simple, but it makes it difficult to consider investment
costs with time decay. In order to consider this type of costs with decay, the configuration option
explained in the following section 6.3.b.

 b) Fixed costs as specific investments in OddFace-PIG.

In Section 6.3.a, a way to consider fixed costs (Investment + O&M) in the Actors of a Room
through Availability Payment was specified. This section shows an alternative mechanism, which
allows to represent in a simplified way the decay over time of investment costs that are generally
associated with improvements in the production of technologies.

The “Technology cost” Panel (see Fig.16) allows establishing the initial investment cost for
each Investment Unit (UI) of the technology and its evolution over time.

The parameter “MUSD / Investment Unit” must be completed with the millions of dollars
that an Investment Unit of the technology costs in the instant t 0 .

The parameter “Indexed proportion [p.u.]” must specify what proportion of the value
specified in the previous parameter is subject to a decay in time. In the example of Fig.16, the value
0.88 is indicating that in this case it is considered that 88% of the amount of the investment per unit
is subject to a decay in time and indirectly that the remaining 12% remains constant.

The parameter “annual rate [p.u.]:” must contain the annual rate at which the indexed

 SimSEE

pág. 28/28.

portion falls. Eq.Error: no se encontró el origen de la referencia shows how the cost of the
Technology Investment Unit C t is calculated in the instant t .

C t=Ct0[f V (1
1+α)

t−t0

+(1−f V)]

where the instant t 0 is the Start of the simulation or the date of Save of the Simulation
(whichever is later). Both values are those specified in the SimSEE Room used. The value C t0

is
the present value of the fixed costs at the instant t 0 . The factor fV corresponds to the portion
of the cost that falls annually to the α rate of decay. In the eq.Error: no se encontró el origen de
la referencia both t and t0 are expressed in years.

 SimSEE

	1. Introduction.
	2. OddFace_prepare – User Manual.
	2.1. Introduction.
	2.2. LOGIN.
	2.3. Problems List.
	2.4. Editing the parameters of an OddFace problem.
	a) Type.
	b) Type information editor.
	c) File with definitions.
	d) Objective Function.
	e) Stages Definition.
	f) Statistical representation.
	g) Delete history.
	h) "Scanning parameters" Panel

	2.5. Consultations on the history of evaluations.

	3. Details of the implementation of the Genetic Algorithms in OddFace.
	3.1. Basic definitions for handling DNA strands.
	a) DNA-> Genotype and Phenotype.
	b) Genotype Descriptors.

	3.2. Definition of basic classes to describe the OddFace problem.
	a) TIndividuo.

	4. Additional considerations.
	4.1. Monte Carlo Sampling.
	4.2. Areas of Indifference in the DNA chain.
	4.3. Unfeasible individuals and bit residue in the DNA chain.

	5. Annex. Probability of Mutation.
	6. OddFace-PIG. Generation Investment Programming.
	6.1. Introduction.
	6.2. General Parameters.
	6.3. Configuration of a technology.
	a) Fixed costs such as payments for room availability.
	b) Fixed costs as specific investments in OddFace-PIG.

