

IMPORTANTE: Este trabajo se realizó en el marco del curso Simulación de Sistemas de Energía Eléctrica (SimSEE) y fue evaluado por el enfoque metodológico, la pericia en la utilización de las herramientas adquiridas en el curso para la resolución del estudio y por la claridad de exposición de los resultados obtenidos. Se quiere dejar expresamente claro que no es relevante a los efectos del curso la veracidad de las hipótesis asumidas por los estudiantes y consecuentemente la exactitud o aplicabilidad de los resultados. Ni la Facultad de Ingeniería, ni el Instituto de Ingeniería Eléctrica, ni el o los docentes, ni los estudiantes asumen ningún tipo de responsabilidad sobre las consecuencias directas o indirectas que asociadas al uso del material del curso y/o a los datos, hipótesis y conclusiones del presente trabajo.

Control de Cotas.

Autores:
Agustín Alvarez
Jesús Eugui
Carolina Rodriguez
Nicolas Yedrzejewski

IIE – FING – UDELAR Trabajo final, curso SimSEE 26/09/2023 Montevideo – Uruguay.

Objetivo

- -,0,-
- ✓ Calibrar las penalidades asociadas al control de cota inferior en los lagos de Bonete, Palmar y Salto Grande de manera de lograr un ajuste que reduzca a no más de 1% la probabilidad de alcanzar las cotas mínimas establecidas.
- ✓ Analizar la afectación en la distribución del Costo de Abastecimiento de la Demanda (CAD) y del Beneficio Por Sustitución (BPS) de las diferentes tecnologías, comparando entre los ajustes encontrados y el ajuste actual.

SimSEE (113_249) para optimizar y simular
 SimRes3 para realizar e imprimir cálculos
 trasponerSimCosto.exe

Hipótesis de trabajo

- ❖ Sala Vates MP con simplificaciones (02/05/2023).
- ❖ Optimización y simulación: 1 año (05/2023-05/2024) con paso diario.
- Optimización con 5 crónicas semilla 40031
- Simulación con 1000 crónicas semilla 10031
- Postes:

Número de Postes: 4							
Poste I	1 °1		2	3	4		
Duraci	óı 1		4	13	6		

Engancha con costo futuro de PES MAYO-2023

Hipótesis de trabajo

Palmar (embalse)
Salto Grande (embalse)
Bonete (embalse y encadenada)
Baygorria (paso)

3 discretizaciones para los lagos.

Los aportes se modelan con CEGH (aportes Bon-Pal-SG, iN34)

Erogados mínimos:

Palmar: 120m3/s (dic-mar)

Bonete: 80 m3/s siempre

SG: 375m3/s (ene-may) y 450 m3/s(abr-dic)

Central	Cota Inicio (m)	Cota Mínima de operación
Bonete	73,60	72,30
Palmar	37,12	37,00
Salto Grande	32,86	32,00

Partimos de una situación de sequía severa.

Hipótesis de trabajo

- ❖ La generación Eólica y Solar son modeladas a través de un CEGH
 - ❖ Ingreso de parque solar de 27 MW nov/2023.
 - ❖ Ingreso de UPM2 con 220MW con rampa hasta 2025.
- ❖ Fuel oil motores 8 representados como importación por su indisponibilidad (23-6hs), CTR, Ciclo Combinado, turbinas gasoil PTA y PTC.

Demanda:

- Modelada a través de un CEGH (proyección 2023: 11.816 GWh, 2024: 12.108 GWh.
- ❖ Demanda plana adicional :

MW	DESDE	HASTA
45	15/04/2023	30/06/2023
67,5	01/07/2023	14/07/2023
90	15/07/2023	31/07/2023
45	01/08/2023	31/12/2023
100	01/01/2024	31/12/2024

Metodología Consideraciones generales

Penalidades

Las alteraciones introducidas por las penalidades no deben verse como una distorsión negativa del funcionamiento óptimo del sistema porque tratan de compensar la omisión que tiene el modelado del sistema a la hora de contemplar una restricción.

Etapas del trabajo:

- Calibración de penalidades de Bonete, Palmar y Salto Grande.
- Comparación de resultados del CAD y BPS.
 - **Eliminando las penalizaciones** por violación de la cota inferior.
 - Con las penalidades actuales.
 - Con las penalidades calibradas.

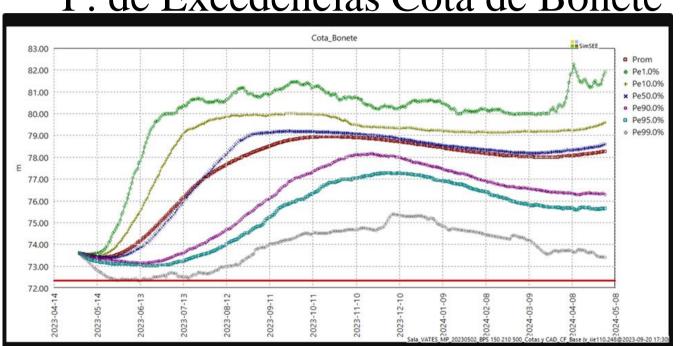
Metodología Consideraciones generales

BPS

- ❖ En un mercado marginalista perfecto, en el equilibrio óptimo de inversiones, la visión del Generador coincide con la visión del óptimo sistema.
- Si bien el análisis que se realiza en este trabajo tiene un enfoque del beneficio económico mirado desde el lado del generador, al mismo tiempo se está analizando la alteración al equilibrio del óptimo global del sistema

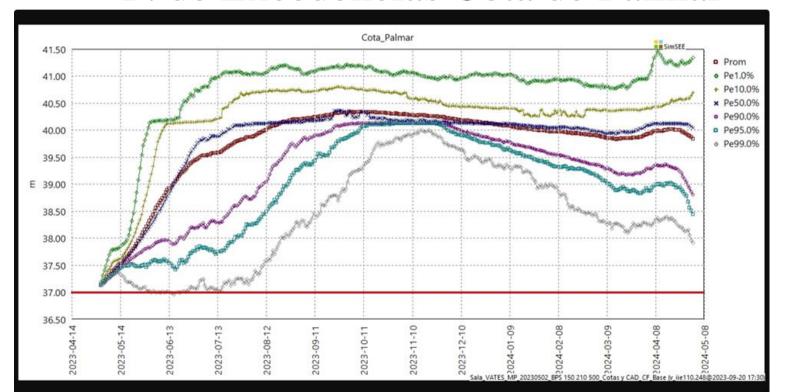
Cálculo del BPS

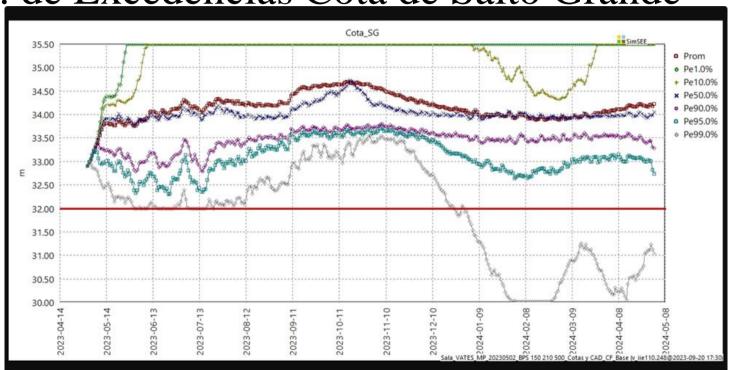
- Térmicos e hidráulicos
 - ❖ BPS=E*(cmg-cv)
 - Para los hidráulicos, se asumió cv = cv_agua
- Eólica, Solar y Biomasa (costo variable nulo)
 - ❖ BPS=E*(cmg)



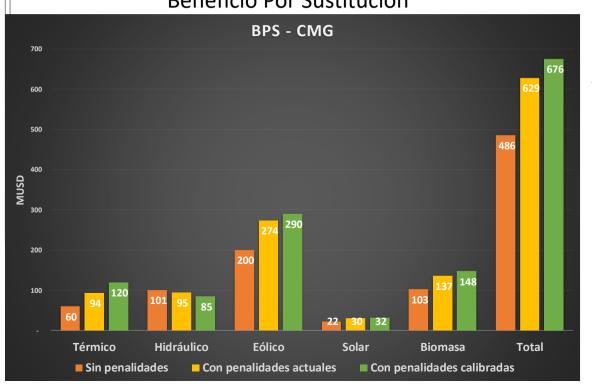
Penalidades calibradas para cada central:

Central	Cota mínima (m)	Penalidad actual (MUSD/(m-dia))	Penalidad calibrada (MUSD/(m-dia))	Variación en % del caso actual	
Bonete	72.3	1.315	1.972	150	
Palmar	37	0.458	0.962	210	
Salto Grande	32	0.611	3.055	500	

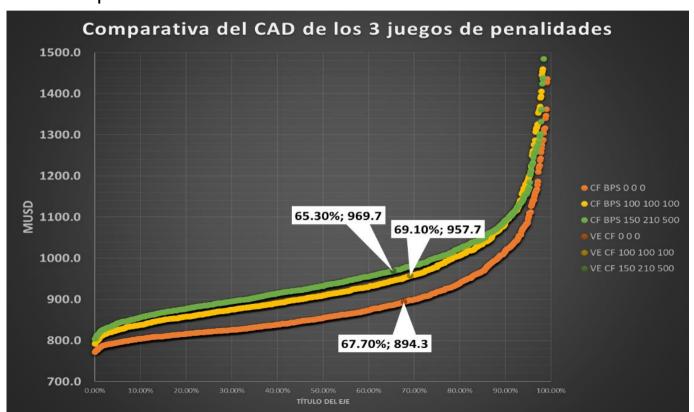

P. de Excedencias Cota de Bonete



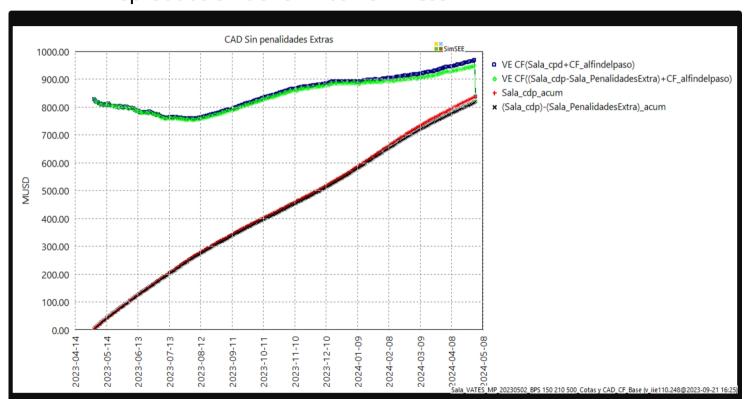
P. de Excedencias Cota de Salto Grande



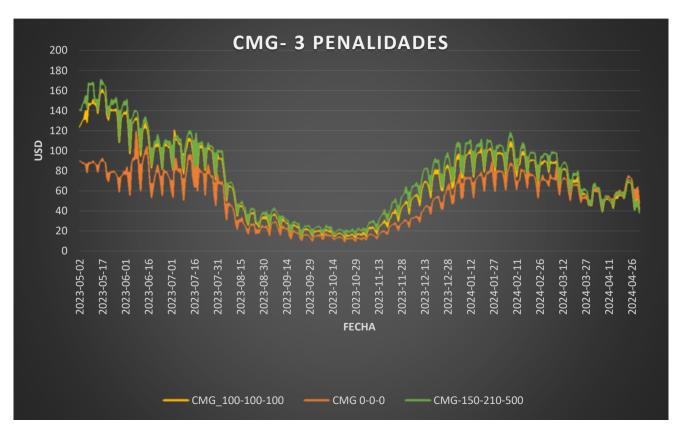
Beneficio Por Sustitución



- A medida que las penalidades son más altas
 - BPS total aumenta.
 - Para Térmicos, Eólicos y Solares el BPS también aumenta.
 - Para Hidráulicos el BPS disminuye.

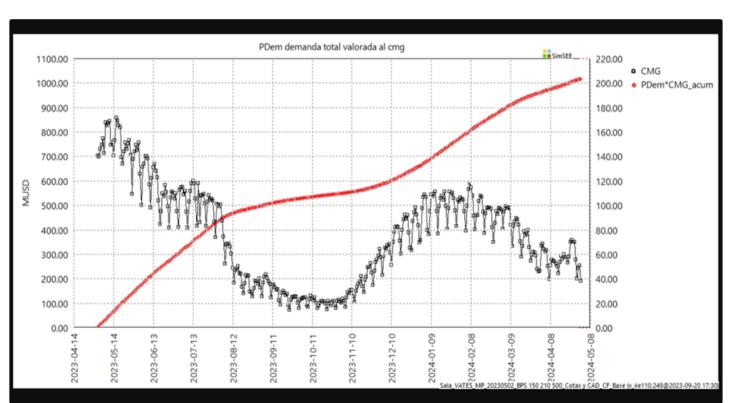

Comparativa CAD

Reproducción del CAD con SimRes3


Comparación CAD para las distintas penalidades

	Caso					
Resultados (MUSD)	Sin penalidades	Con	penalidades actuales	Con penalidades calibradas		
	Valor del caso	Valor del caso Variación respecto al caso Sin penalidades		Valor del caso	Variación respecto al caso Con penalidades actuales	
CF_con_Penalidades	894	958	64	970	12	
cdp_con_Penalidades	750	824	74	838	15	
CF_sin_Penalidades	884	924	40	950	26	
cdp_sin_Penalidades	740	791	51	819	28	
Penalidades	10	33	23	20	-14	

Costo Marginal para las distintas penalidades



Demanda total valorada al Costo Marginal

Conclusiones

- Para Bonete y Palmar se logró calibrar las penalidades aumentándolas en un 50% y en un 110% respectivamente.
- Para Salto Grande no se pudo lograr la calibración debido a las restricciones de erogado mínimo.
- **SESTE AL MANAGE DE LA COMBINATION DEL COMBINATION DE LA COMBINATI**
- Afectación al BPS.
 - ♣ BPS Total ↑
 - Hidráulico L
 - Ll valor del agua aumenta y provoca una disminución de la energía despachada por la tecnología.
 - ❖ Biomasa, Solar y Eólica ↑
 - La generación permanece constante, por lo que el aumento del BPS se asocia al aumento del CMG.
 - ❖ Térmico ↑
 - La energía no despachada por HID es cubierta por los Térmicos.
- Afectación al CAD
 - El CAD aumentó 2.8 % (26MUSD) respecto al de la calibración actual.
 - Este aumento es del mismo orden de magnitud al que se obtuvo entre los casos sin penalidad y con la penalidad actual.

Posibles trabajos futuros.

- ☐ Análisis de Sensibilidad con distintas semillas para obtener la variabilidad de los resultados.
- ☐ Realizar el mismo ejercicio partiendo de una condición inicial distinta en cuanto a aportes y cotas de los lagos.

FIN

•Gracias por vuestra atención.