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Preface

Numerous papers on system identification have been published over the last 40 years.
Though there were substantial developments in the theory of stationary stochastic
processes and multivariable statistical methods during 1950s, it is widely recognized
that the theory of system identification started only in the mid-1960s with the pub-
lication of two important papers; one due to Astrom and Bohlin [17], in which the
maximum likelihood (ML) method was extended to a serially correlated time series
to estimate ARMAX models, and the other due to Ho and Kalman [72], in which
the deterministic state space realization problem was solved for the first time using a
certain Hankel matrix formed in terms of impulse responses. These two papers have
laid the foundation for the future developments of system identification theory and
techniques [55].

The scope of the ML identification method of Astrom and Bohlin [17] was
to build single-input, single-output (SISO) ARMAX models from observed input-
output data sequences. Since the appearance of their paper, many statistical identifi-
cation techniques have been developed in the literature, most of which are now com-
prised under the label of prediction error methods (PEM) or instrumental variable
(1V) methods. This has culminated in the publication of the volumes Ljung [109] and
Soderstrom and Stoica [145]. At this moment we can say that theory of system iden-
tification for SISO systems is established, and the various identification algorithms
have been well tested, and are now available as MATLAB® programs.

Also, identification of multi-input, multi-output (MIMO) systems is an important
problem which is not dealt with satisfactorily by PEM methods. The identification
problem based on the minimization of a prediction error criterion (or a least-squares
type criterion), which in general is a complicated function of the system parameters,
has to be solved by iterative descent methods which may get stuck into local min-
ima. Moreover, optimization methods need canonical parametrizations and it may
be difficult to guess a suitable canonical parametrization from the outset. Since no
single continuous parametrization covers all possible multivariable linear systems
with a fixed McMillan degree, it may be necessary to change parametrization in the
course of the optimization routine. Thus the use of optimization criteria and canon-
ical parametrizations can lead to local minima far from the true solution, and to
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numerically ill-conditioned problems due to poor identifiability, i.e., to near insensi-
tivity of the criterion to the variations of some parameters. Hence it seems that the
PEM method has inherent difficulties for MIMO systems.

On the other hand, stochastic realization theory, initiated by Faurre [46] and
Akaike [1] and others, has brought in a different philosophy of building models from
data, which is not based on optimization concepts. A key step in stochastic realiza-
tion is either to apply the deterministic realization theory to a certain Hankel matrix
constructed with sample estimates of the process covariances, or to apply the canon-
ical correlation analysis (CCA) to the future and past of the observed process. These
algorithms have been shown to be implemented very efficiently and in a numerically
stable way by using the tools of modern numerical linear algebra such as the singular
value decomposition (SVD).

Then, a new effort in digital signal processing and system identification based on
the QR decomposition and the SVD emerged in the mid-1980s and many papers have
been published in the literature [100, 101, 118, 119], etc. These realization theory-
based techniques have led to a development of various so-called subspace identifica-
tion methods, including [163,164,169, 171-173], etc. Moreover, Van Overschee and
De Moor [165] have published a first comprehensive book on subspace identification
of linear systems. An advantage of subspace methods is that we do not need (non-
linear) optimization techniques, nor we need to impose to the system a canonical
form, so that subspace methods do not suffer from the inconveniences encountered
in applying PEM methods to MIMO system identification.

Though I have been interested in stochastic realization theory for many years,
it was around 1990 that I actually resumed studies on realization theory, including
subspace identification methods. However, realization results developed for deter-
ministic systems on the one hand, and stochastic systems on the other, could not be
applied to the identification of dynamic systems in which both a deterministic test
input and a stochastic disturbance are involved. In fact, the deterministic realization
result does not consider any noise, and the stochastic realization theory developed up
to the early 1990s did address modeling of stochastic processes, or time series, only.
Then, I noticed at once that we needed a new realization theory to understand many
existing subspace methods and their underlying relations and to develop advanced
algorithms. Thus I was fully convinced that a new stochastic realization theory in
the presence of exogenous inputs was needed for further developments of subspace
system identification theory and algorithms.

While we were attending the MTNS (The International Symposium on Math-
ematical Theory of Networks and Systems) at Regensburg in 1993, I suggested to
Giorgio Picci, University of Padova, that we should do joint work on stochastic re-
alization theory in the presence of exogenous inputs and a collaboration between us
started in 1994 when he stayed at Kyoto University as a visiting professor. Also, I
successively visited him at the University of Padova in 1997. The collaboration has
resulted in several joint papers [87-90,93, 130, 131]. Professor Picci has in partic-
ular introduced the idea of decomposing the output process into deterministic and
stochastic components by using a preliminary orthogonal decomposition, and then
applying the existing deterministic and stochastic realization techniques to each com-
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ponent to get a realization theory in the presence of exogenous input. On the other
hand, inspired by the CCA-based approach, I have developed a method of solving a
multi-stage Wiener prediction problem to derive an innovation representation of the
stationary process with an observable exogenous input, from which subspace identi-
fication methods are successfully obtained.

This book is an outgrowth of the joint work with Professor Picci on stochastic
realization theory and subspace identification. It provides an in-depth introduction to
subspace methods for system identification of discrete-time linear systems, together
with our results on realization theory in the presence of exogenous inputs and sub-
space system identification methods. I have included proofs of theorems and lemmas
as much as possible, as well as solutions to problems, in order to facilitate the basic
understanding of the material by the readers and to minimize the effort needed to
consult many references.

This textbook is divided into three parts: Part I includes reviews of basic results,
from numerical linear algebra to Kalman filtering, to be used throughout this book,
Part II provides deterministic and stochastic realization theories developed by Ho
and Kalman, Faurre, and Akaike, and Part III discusses stochastic realization results
in the presence of exogenous inputs and their adaptation to subspace identification
methods; see Section 1.6 for more details. Thus, various people can read this book ac-
cording to their needs. For example, people with a good knowledge of linear system
theory and Kalman filtering can begin with Part II. Also, people mainly interested
in applications can just read the algorithms of the various identification methods in
Part III, occasionally returning to Part I and/or Part II when needed. I believe that
this textbook should be suitable for advanced students, applied scientists and engi-
neers who want to acquire solid knowledge and algorithms of subspace identification
methods.

I would like to express my sincere thanks to Giorgio Picci who has greatly con-
tributed to our fruitful collaboration on stochastic realization theory and subspace
identification methods over the last ten years. I am deeply grateful to Hideaki Sakai,
who has read the whole manuscript carefully and provided invaluable suggestions,
which have led to many changes in the manuscript. I am also grateful to Kiyotsugu
Takaba and Hideyuki Tanaka for their useful comments on the manuscript. I have
benefited from joint works with Takahira Ohki, Toshiaki Itoh, Morimasa Ogawa,
and Hajime Ase, who told me about many problems regarding modeling and identi-
fication of industrial processes.

The related research from 1996 through 2004 has been sponsored by the Grant-
in-Aid for Scientific Research, the Japan Society of Promotion of Sciences, which is
gratefully acknowledged.

Tohru Katayama
Kyoto, Japan
January 2005
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1

Introduction

In this introductory chapter, we briefly review the classical prediction error method
(PEM) for identifying linear time-invariant (LTT) systems. We then discuss the basic
idea of subspace methods of system identification, together with the advantages of
subspace methods over the PEM as applied to multivariable dynamic systems.

1.1 System Identification

Figure 1.1 shows a schematic diagram of a dynamic system with input u, output y
and disturbance v. We can observe u and y but not v; we can directly manipulate
the input » but not y. Even if we do not know the inside structure of the system,
the measured input and output data provide useful information about the system
behavior. Thus, we can construct mathematical models to describe dynamics of the
system of interest from observed input-output data.

Figure 1.1. A system with input and disturbance

Dynamic models for prediction and control include transfer functions, state space
models, time-series models, which are parametrized in terms of finite number of
parameters. Thus these dynamic models are referred to as parametric models. Also
used are non-parametric models such as impulse responses, and frequency responses,
spectral density functions, etc.

System identification is a methodology developed mainly in the area of automatic
control, by which we can choose the best model(s) from a given model set based
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on the observed input-output data from the system. Hence, the problem of system
identification is specified by three elements [109]:

e A data set D obtained by input-output measurements.
¢ A model set M, or a model structure, containing candidate models.

e A criterion, or loss, function £ to select the best model(s), or a rule to evaluate
candidate models, based on the data.

The input-output data D are collected through experiment. In this case, we must
design the experiment by deciding input (or test) signals, output signals to be mea-
sured, the sampling interval, etc., thereby systems characteristics are well reflected
in the observed data. Thus, to obtain useful data for system identification, we should
have some a priori information, or some physical knowledge, about the system. Also,
there are cases where we cannot perform open-loop experiments due to safety, some
technical and/or economic reasons, so that we can use data only measured under
normal operating conditions.

A choice of model set M is a difficult issue in system identification, but usu-
ally several class of discrete-time linear time-invariant (LTI) systems are used. Since
these models do not necessarily reflect the knowledge about the structure of the sys-
tem, they are referred to as black-box models. One of the most difficult problems is to
find a good model structure, or to fix orders of the models, based on the given input-
output data. A solution to this problem is given by the Akaike information criterion
(AIC) [3].

Also, by using some physical principles, we can construct models that contain
several unknown parameters. These models are called gray-box models because
some basic laws from physics are employed to describe the dynamics of a system
or a phenomenon.

The next step is to find a model in the model set M, by which the experimental
data is best explained. To this end, we need a criterion to measure the distance be-
tween a model and a real system, so that the criterion should be of physical meaning
and simple enough to be handled mathematically. In terms of the input u, the output
y of a real system, and the model output ys, the criterion is usually defined as

N-1
VN = Z l(y(t)a yM(t): U(t))
t=0

where [(+) is a nonnegative loss function, and N the number of data. If the model
set is parametrized as M = {M,, a € A}, then the identification in narrow sense
reduces to an optimization problem minimizing the criterion Vy with respect to a.

Given three basic elements in system identification, we can in principle find the
best model M* € M. In this case, we need

e A condition for the existence of a model that minimizes the criterion.
e An algorithm of computing models.

¢ A method of model validation.
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In particular, model validation is to determine whether or not an identified model
should be accepted as a suitable description that explains the dynamics of a system.
Thus, model validation is based on the way in which the model is used, a priori
information on the system, the fitness of the model to real data, efc. For example,
if we identify the transfer function of a system, the quality of an identified model
is evaluated based on the step response and/or the pole-zero configuration. Further-
more, if the ultimate goal is to design a control system, then we must evaluate control
performance of a system designed by the identified model. If the performance is not
satisfactory, we must go back to some earlier stages of system identification, includ-
ing the selection of model structure, or experiment design, efc. A flow diagram of
system identification is displayed in Figure 1.2, where we see that the system identi-
fication procedure has an inherent iterative or feedback structure.

Experiment IO
: >
design data
A
Model . Parameter . Model Yes>
set estimation validation
No
Criterion > v
A A
A priori
knowledge

Figure 1.2. A flow diagram of system identification [109, 145]

Models obtained by system identification are valid under some prescribed con-
ditions, e.g., they are valid for a certain neighborhood of working point, and also do
not provide a physical insight into the system because parameters in the model have
no physical meaning. It should be noted that it is engineering skills and deep insights
into the systems, shown as a priori knowledge, that help us to construct mathemat-
ical models based on ill-conditioned data. As shown in Figure 1.2, we cannot get
a desired model unless we iteratively evaluate identified models by trying several
model structures, model orders, efc. At this stage, the AIC plays a very important
role in that it can automatically select the best model based on the given input-output
data in the sense of maximum likelihood (ML) estimation.

It is well known that real systems of interest are nonlinear, time-varying, and
may contain delays, and some variables or signals of central importance may not be
measured. It is also true that LTT systems are the simplest and most important class
of dynamic systems used in practice and in the literature [109]. Though they are
nothing but idealized models, our experiences show that they can well approximate
many industrial processes. Besides, control design methods based on LTI models
often lead to good results in many cases. Also, it should be emphasized that system
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identification is a technique of approximating real systems by means of our models
since there is no “true” system in practical applications [4].

1.2 Classical Identification Methods

Let the “true” system be represented by
(8) y(t) = Po(2)u(t) + vo(t)

where Py(z) is the “true” plant, and vg(t) is the output disturbance. Suppose that we
want to fit a stochastic single-input, single-output (SISO) LTI model (Figure 1.3)

(M) y(t) = P(z,0)u(t) + H(z,0)e(t)

to a given set of input-output data, where e is a white noise with mean 0 and variance
02, and § € R? contains all unknown parameters other than the noise variance. It
may also be noted that the noise v includes the effect of unmeasurable disturbances,
modeling errors, efc.

» P(2) *.(')+ v,

Figure 1.3. An SISO transfer function model

The transfer function of the plant model is usually given by

B(z,0) bz t4 by ™

P(Zaa) = A(Z’g) = 1+alz—1+---+anz_"’

n>m
where, if the plant has a delay, then the parameters by, --- , by with [ > 1 reduce to
zero. Also, the transfer function of the noise model is

C(z,0) 1+ciz7'+- +cpz?

H(z,0) = =
(=,6) D(z,0) 14+diz='+-- +dyz7¢

(1.1)

where H(z, ) is of minimal phase with H (c0,6) = 1.
Suppose that we have observed a sequence of input-output data. Let the input-
output data up to time ¢ — 1 be defined by

Ztil = {U(k}), y(k)a k= 0: 1: e, b= 1}
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Then, it can be shown [109] that the one-step predicted estimate of the output y(t)
based on Z*~! is given by

§(t,0) = H™ ' (2,0)P(z,0)u(t) + [1 — H ' (z,0)]y(t)

Moreover, we define the one-step prediction error e(¢,6) := y(t) — §(¢,d). Then, it
can be expressed as

e(t,0) = H™(2,0)[Po(2) — Pz, 0)]u(t) + H~(2,0)vo(t) (12)

Suppose that we have a set of data Z™V 1. If we specify a particular value to the
parameter 6, then from (1.2), we can obtain a sequence of prediction errors

{e(t,6),t=0,1,---, N -1}

where the initial conditions {e(¢,0), t = —1, --- , —p} should be given. When we
fit a model to the data Z™¥—1, a principle of estimation is to select 6 that produces the
minimum variance of prediction error. Thus the criterion function is given by

1 N—-1 R
W)= D E(t0) (1.3)
t=0

A schematic diagram of the prediction error method (PEM) is displayed in Figure
1.4. Thus, a class of algorithms designed so that a function of prediction errors is
minimized is commonly called the PEM. Since the performance criterion of (1.3) is
in general a complicated function of the system parameters, the problem has to be
solved by iterative descent methods, which may get stuck in local minima.

Vo (t)

G(t,0) — vt e(t,0
Model ( )>(5 (t,6)

A

min Vy (0) <«

Figure 1.4. Prediction error method

Example 1.1. Let H(z) = C(z)/A(2) in (1.1). Then we get the ARMAX! model of
the form

'ARMAX= AutoRegressive Moving Average with eXogenous input.
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A(2)y(t) = B(z)u(t) + C(z)e(t) (1.4)

where the unknown parametersare = (a; -+ an by <+ by 1 - cp)T and
the noise variance o2. Then, the one-step prediction error for the ARMAX model of
(1.4) is expressed as

e(t,0) = [C(z,0)] '[A(=,0)y(t) — B(z, 0)u(t)] (1.5)

Obviously, the polynomial C(z, ) should be stable in order to get a sequence of
prediction errors. Substituting (1.5) into (1.3) yields

N—-1 2
INGERDS [A(””’e)ya)— B9 1)

t=0

Thus, in this case, the PEM reduces to a nonlinear optimization problem of minimiz-
ing the performance index Vi (#) with respect to the parameter vector § under the
constraint that C(z, 6) is stable. O

For the detailed exposition of the PEM, including a frequency domain interpre-
tation of the PEM and the analysis of convergence of the estimate, see [109, 145].

1.3 Prediction Error Method for State Space Models

Consider an innovation representation of a discrete-time LTI system of the form

x(t+ 1) = Az(t) + Bu(t) + Ke(t) (1.6a)
y(t) = Cx(t) + Du(t) + e(t) (1.6b)

where y € RP is the output vector, u € R™ the input vector, x € R the state vector,
e € RP the innovation vector with mean zero and covariance matrix ® > 0, and
(4, B, C, D, K) are matrices of appropriate dimensions. The unknown parameters
in the state space model are contained in these system matrices and covariance matrix
R of the innovation process.

Consider the application of the PEM to the multi-input multi-output (MIMO)
model (1.6). In view of Theorem 5.2, the prediction error £(¢, 8) is computed by a
linear state space model with inputs (), y(t) of the form

Z(t+1,0) = [A(0) — K(0)Cl&(t,0) + B(0)u(t) + K(8)y(t)
e(t,0) = —Ci(t,0) — D(O)u(t) +y(t)

with the initial condition Z(0,6) = 0. Then, in terms of £(¢,6), the performance
index is given by

1 N-1
W) = o O IO
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Thus the PEM estimates are obtained by minimizing Vy (6) with respect to 6, and the
covariance matrix R of e is estimated by computing the sample covariance matrix of
e(t),t=0,1,---, N —1.

If we can evaluate the gradient 0V /06, we can in principle compute a (lo-
cal) minimum of the criterion Vi (6) by utilizing a (conjugate) gradient method.
Also optimization methods need canonical parametrizations and it may be difficult
to guess a suitable canonical parametrization from the outset. Since no single con-
tinuous parametrization covers all possible multivariable linear systems with a fixed
McMillan degree, it may be necessary to change parametrization in the course of the
optimization routine.

Even if this difficulty can be tackled by using overlapping parametrizations or
pseudo-canonical forms, sensible complications in the algorithm in general result.
Thus the use of optimization criteria and canonical parametrizations can lead to local
minima far from the true solution, to complicated algorithms for switching between
canonical forms, and to numerically ill-conditioned problems due to poor identifia-
bility, i.e., to near insensitivity of the criterion to the variations of some parameters.
Hence it seems that the PEM method has inherent difficulties for MIMO systems.

It is well known that for a given triplet (n,m, p), there does not exist a global
canonical MIMO linear state space form [57,67]. But there are some interests in
deriving a convenient parametrization for MIMO systems called an overlapping
parametrization, or pseudo-canonical form [54,68].

Example 1.2. Consider the state space model of (1.6). An MIMO observable pseudo-
canonical form with (p = 3, m = 4, n = 9) can be given by

(010000000_ X X X X X X X
001000000 X X X X X X X
X X X X X X X X X X X X X X X X
000010000 X X X X X X X
A=]000001000]|, B=|xxxx|, K=|xXxX
000000100 X X X X X X X
X X X X X X X X X X X X X X X X
000000001 X X X X X X X
Lxxxxxxxxx_ | X X X X | | X X X |
100000000 [x x x x
C=]/000100000], D=]xx x X
000000010 | X X X X

where x indicates independent parameters. See Appendix C, where an overlapping
parametrization is derived for a stochastic system.

The pair (C, A) is observable by definition, but the reachability of pairs (A4, B)
and (A, K) depends on the actual values of parameters. We see that A has pn inde-
pendent parameters, and all the elements in (B, D, K) are independent parameters,
but the parameters in C' are fixed. Thus the number of unknown parameters in the
overlapping parametrization above is Noyiap = 1(2p 4+ m) + pm. On the other hand,
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the total number of parameters in (4, B, C, D, K)is Nt = n? +n(2p+m) + pm,
so that we can save n? parameters by using the above overlapping parametrization.
O

Recently, data driven local coordinates, which is closely related to the overlap-
ping parametrizations, have been introduced in McKelvey et al. [114].

1.4 Subspace Methods of System Identification

In this section, we glance at some basic ideas in subspace identification methods. For
more detail, see Chapter 6.

Basic Idea of Subspace Methods

Subspace identification methods are based on the following idea. Suppose that
an estimate of a sequence of state vectors of the state space model of (1.6) are
somehow constructed from the observed input-output data (see below). Then, for
t=0,1,--- ,N — 1, we have

el =4 2] ] + [

where Z € R is the estimate of state vector, u € R™ the input, y € R? the output,

and 7, v are residuals. It may be noted that since all the variables are given, (1.7) is a

A B

regression model for system parameters @ := [ o D} € R(*+p)x(n+m) Thus the

least-squares estimate of © is given by

N-1r_ N-1_
e = <Z |:33(;(-;)1):| [;ET(t) UT(t)]> <Z [ugg} [iT(t) UT(t)]>

t=0 t=0

This class of approaches are called the direct N4SID methods [175]. We see that this
estimate uniquely exists if the rank condition

20 a() sV -] _
rank lu(O) u(l) - u(N—l)] =nt

is satisfied. This condition, discussed some 30 years ago by Gopinath [62], plays an

important role in subspace identification as well; see Section 6.3.
Moreover, the covariance matrices of the residuals are given by

EHEEAIGRRT
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Thus, by solving a certain algebraic Riccati equation, we can derive a steady state
Kalman filter (or an innovation model) of the form

4= (4 2] [0 1o

where K is the steady state Kalman gain, Z is the estimate of state vector, and € is
the estimate of innovation process.

Computation of State Vectors

We explain how we compute the estimate of state vectors by the LQ decomposition;
this is a basic technique in subspace identification methods (Section 6.6). Suppose
that we have an input-output data from an LTI system. Let the block Hankel matrices
be defined by

35 G
Ugjr—1 = : € RN
wlk=1) u(k) - w(N+k—2) ]
and i
y(0) y(1)- y(N-1)
o |
y(k—1) y(k) - y(N +k—2),

where k£ > n and N is sufficiently large.

For notational convenience, let p and f denote the past and future, respectively.
Then, we define the past data as Uy, := Up|r—1 and Y, := Ygr_;. Similarly, we de-
fine the future data as Uy := Uy|ap,—1 and Yy := Yy 951 . Let the LQ decomposition
be given by

Uy Ry 0 O QT
Wp| = | R21 R2 O Q3
Yy Rs31 Rys Raz | | Q3

where Ry € RFmxkm Ro, e RE(m4p)xk(m+p) and Rys € RFPXFP are upper
triangular, and );, @ = 1, 2, 3 are orthogonal matrices. Then, from Theorem 6.3, we
UP
)

see that the oblique projection of the future Y; onto the joint past W, := {
P

along the future Uy is given by
€ = By, {Y;|W,} = Rsx R, W,

where ()T denotes the pseudo-inverse. We can show that & can be factored as a
product of the extended observability matrix O and the future state vector Xy :=
[z(k) - - z(k+ N —1)] € RV It thus follows that
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€ = 04X = Rss RS, W,

Suppose that the SVD of ¢ be given by ¢ = UXVT with rank(X) = n. Thus,
we can take the extended observability matrix as

Op = UX/? (1.8)

Hence, it follows that the state vector is given by Xy = OL{ = X2yT,
Alternatively, by using a so-called shift invariant property of the extended ob-
servability matrix of (1.8), we can respectively compute matrices A and C as

A:OL_lok(p—l—lzpk,l:n), C=0r1:p,1:n)

This class of approaches are called the realization-based N4SID methods [175]. For
detail, see the MOESP method in Section 6.5.

Summarizing, under certain assumptions, we can reconstruct the estimate of a
sequence of state vectors and the extended observability matrix from given input-
output data. Numerical methods of obtaining the state estimates and extended ob-
servability matrix of LTI systems will be explained in detail in Chapter 6. Once this
“trick” is understood, subspace identification methods in the literature can be under-
stood without any difficulty.

Why Subspace Methods?

Although modern control design techniques have evolved based on the state space
approach, the classical system identification methods have been developed in the
input-output framework until the mid-1980s. It is quite recent that the state concept
was introduced in system identification, thereby developing many subspace methods
based on classical (stochastic) realization theory.

From Figure 1.5, we see some differences in the classical and subspace meth-
ods of system identification, where the left-hand side is the subspace method, and
the right-hand side is the classical optimization-based method. It is interesting to ob-
serve the difference in the flow of two approaches; in the classical method, a transfer
function model is first identified, and then a state space model is obtained by us-
ing some realization technique; from the state space model, we can compute state
vectors, or the Kalman filter state vectors. In subspace methods, however, we first
construct the state estimates from given input-output data by using a simple proce-
dure based on tools of numerical linear algebra, and a state space model is obtained
by solving a least-squares problem as explained above, from which we can easily
compute a transfer matrix if necessary. Thus an important point of the study of sub-
space methods is to understand the key point of how the Kalman filter state vectors
and the extended observability matrix are obtained by using tools of numerical linear
algebra.

To recapitulate, the advantage of subspace methods, being based on reliable nu-
merical algorithms of the QR decomposition and the SVD, is that we do not need
(nonlinear) optimization techniques, nor do we need to impose onto the system a
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Subspace methods Classical methods
Input-output data

Projection/SVD PEM/Least-squares
A\ A\
State vector Transfer matrix
Least-squares Realization
A\ A\
State space State space
model model

Kalman filter
A\

Transfer matrix State vector

Figure 1.5. Subspace and classical methods of system identification ( [165])

canonical form. This implies that subspace algorithms can equally be applicable to
MIMO as well as SISO system identification. In other words, subspace methods do
not suffer from the inconveniences encountered in applying PEM methods to MIMO
system identification.

1.5 Historical Remarks

The origin of subspace methods may date back to multivariable statistical analy-
sis [96], in particular to the principal component analysis (PCA) and canonical cor-
relation analysis (CCA) due to Hotelling [74,75] developed nearly 70 years ago. It
is, however, generally understood that the concepts of subspace methods have spread
to the areas of signal processing and system identification with the invention of the
MUSIC (MUltiple SIgnal Classification) algorithm due to Schmidt [140]. We can
also observe that the MUSIC is an extension of harmonic decomposition method of
Pisarenko [133], which is in fact closely related to the classical idea of Levin [104]
in the mid-1960s. For more detail, see the editorial of two special issues on Subspace
Methods (Parts I and II) of Signal Processing [176], and also [150, 162].

Canonical Correlation Analysis

Hotelling [75] has developed the CCA technique to analyze linear relations between
two sets of random variables. The CCA has been further developed by Anderson
[14]. The predecessor of the concept of canonical correlations is that of canonical
angles between two subspaces; see [21]. In fact, the ith canonical correlation p; be-
tween two sets of random variables is related to the ith canonical angle 6; between
two Hilbert spaces generated by them via p; = cos 6;.
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Gel’fand and Yaglom [52] have introduced mutual information between two sta-
tionary random processes in terms of canonical correlations of the two processes.
Bjorck and Golub [21] have solved the canonical correlation problem by using the
SVD. Akaike [2, 3] has analyzed the structure of the information interface between
the future and past of a stochastic process by means of the CCA, and thereby de-
veloped a novel stochastic realization theory. Pavon [126] has studied the mutual
information for a vector stationary process, and Desai et al. [42,43] have developed
a theory of stochastic balanced realization by using the CCA. Also, Jonckheere and
Helton [77] have solved the spectral reduction problem by using the CCA and ex-
plored its relation to the Hankel norm approximation problem.

Hannan and Poskit [68] have derived conditions under which a vector ARMA
process has unit canonical correlations. More recently, several analytical formulas for
computing canonical correlations between the past and future of stationary stochastic
processes have been developed by De Cock [39].

Stochastic Realization

Earlier results on the stochastic realization are due to Anderson [9] and Faurre [45].
Also, related spectral factorization results based on the state space methods are given
by Anderson [7, 8]. By using the deterministic realization theory together with the
LMI and algebraic Riccati equations, Faurre [45—47] has made a fundamental contri-
bution to the stochastic realization theory. In Akaike [1], a stochastic interpretation
of various realization algorithms, including the algorithm of Ho and Kalman [72], is
provided. Moreover, Aoki [15] has derived stochastic realization algorithm based on
the CCA and deterministic realization theory. Subspace methods of identifying state
space models have been developed by De Moor et al. [41], Larimore [100, 101] and
Van Overschee and De Moor [163]. Lindquist and Picci [106] have analyzed state
space identification algorithms in the light of geometric theory of stochastic realiza-
tion. Also, the conditional canonical correlations have been defined and employed
to develop a stochastic realization theory in the presence of exogenous inputs by
Katayama and Picci [90].

Subspace Methods

A new approach to system identification based on the QR decomposition and the
SVD has emerged and many papers have been published in the literature in the late-
1980s, e.g. De Moor [41], Moonen et al. [118, 119]. Then, these new techniques
have led to a development of various subspace identification methods, including
Verhaegen and Dewilde [172, 173], Van Overschee and De Moor [164], Picci and
Katayama [130], etc. In 1996, a first comprehensive book on subspace identifica-
tion of linear systems is published by Van Overschee and De Moor [165]. Moreover,
some recent developments in the asymptotic analysis of N4SID methods are found in
Jansson and Wahlberg [76], Bauer and Jansson [19], and Chiuso and Picci [31, 32].
Frequency domain subspace identification methods are also developed in McKelvey
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et al. [113] and Van Overschee et al. [166]. Among many papers on subspace iden-
tification of continuous-time systems, we just mention Ohsumi et al. [120], which is
based on a mathematically sound distribution approach.

1.6 Outline of the Book

The primary goal of this book is to provide an in-depth knowledge and algorithms
for the subspace methods for system identification to advanced students, engineers
and applied scientists. The plan of this book is as follows.

Part I is devoted to reviews of some results frequently used throughout this book.
More precisely, Chapter 2 introduces basic facts in numerical linear algebra, includ-
ing the QR decomposition, the SVD, the projection and orthogonal projection, the
least-squares method, the rank of Hankel matrices, efc. Some useful matrix formulas
are given at the end of chapter as problems.

Chapter 3 deals with the state space theory for linear discrete-time systems,
including the reachability, observability, realization theory, and model reduction
method, etc.

In Chapter 4, we introduce stochastic processes, spectral analysis, and discuss
the Wold decomposition theorem in a Hilbert space of a second-order stationary
stochastic process. We also present a stochastic state space model, together with
forward and backward Markov models for a stationary process.

Chapter 5 considers the minimum variance state estimation problem based on
the orthogonal projection, and then derives the Kalman filter algorithm and discrete-
time Riccati equations. Also derived are forward and backward stationary Kalman
filters, which are respectively called forward and backward innovation models for a
stationary stochastic process.

Part IT provides a comprehensive treatment of the theories of deterministic and
stochastic realization. In Chapter 6, we deal with the classical deterministic realiza-
tion result due to Ho and Kalman [72] based on the SVD of Hankel matrix formed
by impulse responses. By defining the future and past of the data, we explain how
the LQ decomposition of the data matrix is utilized to retrieve the information about
the extended observability matrix of a linear system. We then derive the MOESP
method [172] and N4SID method [164, 165] in deterministic setting. The influence
of white noise on the SVD of a wide rectangular matrix is also discussed, and some
numerical results are included.

Chapter 7 is addressed to the stochastic realization theory due to Faurre [46] by
using the LMI and spectral factorization technique, and to the associated algebraic
Riccati equation (ARE) and algebraic Riccati inequality (ARI). The positive realness
of covariance matrices is also proved with the help of AREs.

In Chapter 8, we present the stochastic realization theory developed by Akaike
[2]. We discuss the predictor spaces for stationary stochastic processes. Then, based
on the canonical correlations of the future and past of a stationary process, balanced
and reduced stochastic realizations of Desai ef al. [42,43] are derived by using the
forward and backward Markov models.
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Part IIT presents our stochastic realization results and their adaptation to sub-
space identification methods. Chapter 9 considers a stochastic realization theory in
the presence of an exogenous input based on Picci and Katayama [130]. We first re-
view projections in a Hilbert space and consider feedback-free conditions between
the joint input-output process. We then develop a state space model with a natural
block structure of such processes based on a preliminary orthogonal decomposition
of the output process into the deterministic and stochastic components. By adapting
it to the finite input-output data, subspace identification algorithms, called the ORT,
are derived based on the LQ decomposition and the SVD.

In Chapter 10, based on Katayama and Picci [90], we consider the same stochas-
tic realization problem treated in Chapter 9. By formulating it as a multi-stage Wiener
prediction problem and introducing the conditional canonical correlations, we extend
the Akaike’s stochastic realization theory to a stochastic system with an exogenous
input, deriving a subspace stochastic identification method called the CCA method.
Some comparative numerical studies are included.

Chapter 11 is addressed to closed-loop subspace identification problems in the
framework of the joint input-output approach. Based on our results [87, 88], two
methods are derived by applying the ORT and CCA methods, and some simulation
results are included. Also, under the assumption that the system is open-loop stable,
a simple method of identifying the plant, controller and the noise model based on the
ORT method is presented [92].

Finally, Appendix A reviews the classical least-squares method for linear regres-
sion models and its relation to the LQ decomposition. Appendix B is concerned
with input signals for system identification and the PE condition for deterministic
as well as stationary stochastic signals. In Appendix C, we derive an overlapping
parametrization of MIMO linear stochastic systems. Appendix D presents some of
MATLAB® programs used for simulation studies in this book. Solutions to problems
are also provided in Appendix E.

1.7 Notes and References

Among many books on system identification, we just mention Box and Jenkins [22],
Goodwin and Payne [61], Ljung [109], Soderstrom and Stoica [145], and a recent
book by Pintelon and Schoukens [132], which is devoted to a frequency domain
approach. The book by Van Overschee and De Moor [165] is a first comprehen-
sive book on subspace identification of linear systems, and there are some sections
dealing with subspace methods in [109, 132]. Also, Mehra and Lainiotis [116], as a
research oriented monograph, includes collections of important articles for system
identification in the mid-1970s.
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Linear Algebra and Preliminaries

In this chapter, we review some basic results in numerical linear algebra, which are
repeatedly used in later chapters. Among others, the QR decomposition and the sin-
gular value decomposition (SVD) are the most valuable tools in the areas of signal
processing and system identification.

2.1 Vectors and Matrices

Let R be the set of real numbers, R™ the set of n-dimensional real vectors, and R™*™
the set of m x n real matrices. The lower case letters z, y, - - - denote vectors, and
capital letters A, B, C, --- ; X, Y, Z, --- denote matrices. Transpositions of a
vector 2 and a matrix A are denoted by 2™ and AT, respectively. The determinant of
a square matrix A is denoted by |A|, or det(A), and the trace by trace(A).

The n x n identity matrix is denoted by I,,. If there is no confusion, we simply
write I, deleting the subscript denoting the dimension. The inverse of a square matrix
A is denoted by A~!. We also use A~T to denote (A71)T = (AT)~1. A matrix
satisfying AT = A is called a symmetric matrix. If a matrix A € R™*" withm > n
satisfies AT A = I,,, it is called an orthogonal matrix. Thus, for an orthogonal matrix
A=lajas -~ a),a; ER™, i=1,---n,wehaveala; = 6;;,i, j=1,---, n,
where 4;; is the Kronecker delta defined by

1 i
dij =14 Z J
0, 1#]

For vectors z, y € R™, the inner product is defined by

n
(z,y) =2y = Z Tiyi=y'x

i=1

Also, for A € R**™ and z € R", we define the quadratic form
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zTAz = (z, Az) Z 3T % 2.1

4,j=1

Define A = (A+ AT)/2. Then, we have 2TAz = 2TAx. Thus it is assumed without
loss of generality that A is symmetric in defining a quadratic form.

If zTAz > 0, = # 0, then A is positive definite, and is written as A > 0. If
2TAz > 0holds, A is called nonnegative definite, and is written as A > 0. Moreover,
if A— B > 0 (or > 0) holds, then we simply write A > B (or A > B).

The basic facts for real vectors and matrices mentioned above can carry over to
complex vectors and matrices. Let C be the set of complex numbers, C* the set of
n-dimensional complex vectors, and C™*™ the set of m x n complex matrices. The
complex conjugate of A € C is denoted by ), and similarly the complex conjugate
transpose of A = (a;;) € C™*™ is denoted by A" = (@;;). We say that A € C**"
is Hermitian if AY = A, and unitary if A¥A =T,

The inner product of z, y € C™ is defined by

oy = Z;f:iyi =yHy
i—1

As in the real case, the quadratic form 2HAz, € C" is defined for a Hermitian
matrix A. We say that A is positive definite if z542 > 0,2 # 0, and nonnegative
definite if Az > 0; being positive (nonnegative) definite is written as A > 0
(A>0.

The characteristic polynomial for A € R"*™ is defined by

oa(z)i=det(zl —A) = 2"+ 2" '+ tap 12+, (2.2)

The n roots of ¢ 4(z) = 0 are called the eigenvalues of A. The set of eigenvalues of
A, denoted by A\(A), is called the spectrum of A. The ith eigenvalue is described by
Xi(A). Since p4(z) has real coefficients, if A € C is an eigenvalue, so is A € C. If
A € M(A), there exists a vector v € C" satisfying

Av = Mo, v#0

In this case, v € C" is called an eigenvector corresponding to the eigenvalue . It
may be noted that, since the eigenvalues are complex, the corresponding eigenvectors
are also complex.

Let the characteristic polynomial of A € R™*™ be given by (2.2). Then the
following matrix polynomial equation holds:

oa(Ad) = A"+ A"+t a1 At a, =0 (2.3)

where the right-hand side is the zero matrix of size n x n. This result is known as
the Cayley-Hamilton theorem.

We see that the eigenvalues A;, ¢ = 1, --- , n of a symmetric nonnegative defi-
nite matrix A € R"*" are nonnegative. Thus by means of an orthogonal matrix 7',
we can transform A into a diagonal form, i.e.,
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A1
A2
T1AT = ) = diag(A1, A2, -5 An)
An
Define p; = /A, i = 1, ---, n. Then we have
M1 M
M2 H2
A=T , Tt
HUn Hn
Also, let B be given by
H1
2

B = ) 7!
Hn

Then it follows that A = BT B, so that B is called a square root matrix of A, and is
written as v/ A or A/2. For any orthogonal matrix (), we see that By = () B satisfies
A = BB, so that By is also a square root matrix of A, showing that a square root
matrix is not unique.

Suppose that A = (a;;) € R™*™. Then, A(p : ¢, r : s) denotes the submatrix of
A formedby p, p+1,---,qrowsandr, r +1,---, s columns, e.g.,

a23 A24 G25 A26
A(2:4;3:6) = | azz az4 ass aze
43 Q44 Q45 Q46

In particular, A(p : ¢,:) means the submatrix formed by p, p + 1, -+ , ¢ rows, and
similarly A(:,r : s) the submatrix formed by 7, 7 + 1, - - - , s columns. Also, A(3, :)
and A(:, j) respectively represent the ith row and jth column of A.

2.2 Subspaces and Linear Independence

In the following, we assume that scalars are real; but all the results are extended to
complex scalars.

Consider a set V which is not void. For z,y € V, and for a scalar a € R, the
sum x + y and product acz are defined. Suppose that the set V satisfies the axiom
of “linear space” with respect to the addition and product defined above. Then V is
called a linear space over R. The set of n-dimensional vectors R” and C™ are linear
spaces over R and C, respectively.
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Suppose that W be a subset of a linear space V. For any wy, w2 € W and aj,
as € R, if ayw; + asws € W holds, then W is called a subspace of V, and this fact
is simply expressed as W C V.

For a set of vectors {z1, - -+, =, } in R™, if there exist scalars ay, - - - , @, with
a; # 0 for at least an ¢ such that

Z Q;T; = 0
Jj=1
holds, then {z1, - -, z,} are called linearly dependent. Conversely, if we have
Zajxj:() = a==a,=0
j=1

then {z;, ---, x,} are called linearly independent.
All the linear combinations of vectors {w1, - - , w,} in R™ form a subspace of
IR™, which is written as

P
W =span{wy, ---, wp} = Z ojw; | ag, -, op €ER
j=1
If {ws, - -+, wy,} are linearly independent, they are called a basis of the space W.
Suppose that V is a subspace of R™. Then there exists a basis {vy, -+, v4} in
V such that
V = span{vy, -, va}

Hence, any z € 'V can be expressed as a linear combination of the form
d
x:Zﬁ]vjv ﬁla'“aﬁdeR
=1

where 1, ---, B4 are components of z with respect to the basis {vy, ---, v4}.
Choice of basis is not unique, but the number of the elements of any basis is unique.
The number is called the dimension of V, which is denoted by dim(V).

For a matrix A € R™*™, the image of A is defined by

This is a subspace of R™, and is also called the range of A. If A = [a; --- a,], then
we have Im(A) = span{a;, ---, a,}. Moreover, the set of vectors mapped to zero
are called the kernel of A, which is written as

Ker(4) = {z ¢ R" | Az =0}

This is also called the null space of A, a subspace of R".
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The rank of A € R™*" is defined by dim(Im A) and is expressed as rank(A).
We see that rank(A) = r if and only if the maximum number of independent vec-
tors among the column vectors ay, ---, a, of A is r. This is also equal to the
number of independent vectors in row vectors @i, ---, a. of A. Thus it follows
that rank(A) = rank(A71).

It can be shown that for A € R™*™,

dim(Im A) + dim(Ker A) = n (2.4)
Hence, if m = n holds, the following are equivalent:
(i) A : nonsingular (ii) Ker(A) = {0} (iii) rank(A) =n

Suppose that z, y € R*. If 21y = 0, or if the vectors are mutually orthogonal,
we write z L . If yT2 = 0 holds for all z € V C R", we say that y is orthogonal
to 'V, which is written as y L V. The set of y € R™ satisfying y L V is called the
orthogonal complement, which is expressed as

Vi={yeR"|yTz=0,VzeV}

The orthogonal complement V- is a subspace whether or not V is a subspace.

LetV, W C R be two subspaces. If vTw = 0 holds for any v € V and w € W,
then we say that V and ‘W are orthogonal, so that we write V L 'W. Also, the vector
sum of V and W is defined by

VVW={v+w|veV,weW}

It may be noted that this is not the union V U ‘W of the two subspaces. Moreover, if
VNW = {0} holds, the vector sum is called the direct sum, and is written as 'V + 'W.

Also, if V L ‘W holds, then it is called the direct orthogonal sum, and is expressed as
Ve W.
For a subspace V C R™, we have a unique decomposition

R*=VegVt (2.5)

This implies that z € R™ has a unique decomposition z = v + w, v € V, w € V+.
LetV C R™ be a subspace, and A € R**" a linear transform. Then, if

zeV = Az eV (AVCYV)

holds, 'V is called an A-invariant subspace. The spaces spanned by eigenvectors, and
Im(A), Ker(A) are all important A-invariant subspaces of R”.

2.3 Norms of Vectors and Matrices

Definition 2.1. A vector norm (|| - ||) has the following properties.
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(i) llzll 2 0; flzll =0 & z=0
(i) [[Azll = [A[ll=ll, A scalar

(iii) ||z + vyl < |lz|| + ||yl ~ (triangular inequality) O
For a vector z = (z1, ---, z,)1 € R, the 2-norm (or Euclidean norm) is
defined by
. oy1/2
lallo = (jar[* + -+ + )/
and the infinity-norm is defined by
[#]loc = max(lz:], -, |2n])

Since A € R™*™ can be viewed as a vector in R™", the definition of a matrix
norm should be compatible with that of the vector norm. The most popular matrix
norms are the Frobenius norm and the 2-norm. The former norm is given by

|AllF = izn: aj; = \/trace(ATA) (2.6)

i=1 j=1

The latter is called an operator norm, which is defined by

Az 2
4]l = sup 141

2.7
P el @D

We have the following inequalities for the above two norms:
1 Azfls < [[All2 l2ll2,  |ABlla < l|Alla [[Blla;  a =2, F

If Q is orthogonal, i.e., QT Q = I, we have ||Qz||? = 2T QT Qz = ||=||3. Moreover,
it follows that ||QA|lo = ||A||la for @ = 2, F. Thus we see that the 2-norm and
Frobenius norm are invariant under orthogonal transforms. We often write the 2-
norm of z as ||z||, suppressing the subscript.

For a complex vector z € C*, and a complex matrix A € C™*" | their norms are
defined similarly to the real cases.

Lemma 2.1. For A € R"*", the spectral radius is defined by

Then, p(A) < ||A||a holds.
Proof. Clearly, there exists an eigenvalue A for which |A| = p(A). Let Az = Az,
x #0.LetX :=[z x -+ x] € C**™, and consider AX = AX. Then, for any
matrix norm || - ||, we have

AL IX o = IAX o = |AX][a < [|A]la - IX]la; [ Xla #0

and hence |\| = p(A) < ||4]|a- O

More precisely, the above result holds for many matrix norms [73].
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2.4 QR Decomposition

In order to consider the QR decomposition, we shall introduce an orthogonal trans-
form, called the Householder transform (see Figure 2.1).

Lemma 2.2. Consider two vectors & # y € R™ with ||z|| = ||y||. Then there exists
a vector u € R™ such that

(I = 2uu™z =y, llul| =1 (2.9)

The vector u is defined uniquely up to signature by

u=+ ° 7Y (2.10)
Iz —yll
span {u} z
A
» span {u}t
Pr=y
Figure 2.1. Householder transform
Proof. By using (2.10) and the fact that ||z|| = ||y|| and ¥y = y*z, we compute
the left-hand side of (2.9) to get
9 _ _.N\T 2 _ T,._,T
ooy 20 VEDT et
(z —y)t (= —y) stz —aly —ytz +yly
2 _ T,. __,7T
_ g ey -yt

2(zTx — yTx)

Suppose now that a vector v € R™ also satisfies the condition of this lemma. Then
we have ||v]| = 1, and hence

y=0—-2uuV)z =T -2vvh)z = ww'zs)=v@lz), Vz

Putting z = w (or x = v) yields vTu = 1. Thus it follows that v = +u, showing
the uniqueness of the vector u up to signature. O

The matrix P := I — 2uuT of Lemma 2.2, called the Householder transform, is
symmetric and satisfies

P?=(I-2uu™)? =1 —4uu™ + 4u(u"uw)u™ =1
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Thus it follows that P~! = P = PT, implying that P is an orthogonal transform,
and that Px = y, Py = x hold.

Leta, b € R with ||a|| = ||b]|. We consider a problem of transforming the vector
a into the vector b, of which the first element is nonzero, but the other elements are
all zeros. More precisely, we wish to find a transform that performs the following
reduction

ay b1
az
a=| T = b= |, lall = bl =1l
an, 0
Since ||a|| = ||b]|, we see that b; = =£||a]|. It follows that
a; — by
~ a2 ~112 T~
a:=a-b= ) , l|a]]* = 2b1(by —a1) = —2b"a
425

It should be noted that if the sign of b; is chosen as the same as that of a;, there
is a possibility that |a; — by | has a small value, so that a large relative error may arise
in the term T u = @' a. This difficulty can be simply avoided by choosing the sign
of b, opposite to that of a; .

We now define

2aat aal aal
P—T_ —1 =1 2.11
lae = Teta = @10

Noting that aTa = bf and bTa = bya;, we have

Pa=lr+ (a—b)(il—b)T d—a— (a—b)(aTa—bTa) .
b1a1 bl (bl - al)

Hence, by knowing @ = a — b and by, the vector a can be transformed into the
vector b with the specified form. It is well known that this method is very efficient
and reliable, since only the first component of a is modified in the computation. In
the following, a plays the role of the vector u in the Householder transform, though
the norm of a is not unity.

Now we introduce the QR decomposition, which is quite useful in numerical
linear algebra. We assume that matrices are real, though the QR decomposition is
applicable to complex matrices.

Lemma 2.3. A tall rectangular matrix A € R™*", m > n is decomposed into a

product of two matrices:
A=QR (2.12)

where ) € R™*™ is an orthogonal matrix with QTQ = I,,, and R € R**™ is an
upper triangular matrix. The right-hand side of (2.12) is called the QR decomposi-
tion of A.
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Proof. The decomposition is equivalent to QT A = R, so that QT is an orthogonal
matrix that transforms a given matrix A into an upper triangular matrix. In the fol-
lowing, we give a method of performing this transform by means of the Householder
transforms.

Let a) = A(:, 1), the first column vector of A. By computing (") := @ and

bgl) , we perform the following transform:
ai1 ap — bgl) bgl)
RCDI B IRV R DO B B
Am1 Am1 0

where o) = |la®)||. According to (2.11), let
PO =1+ o™ @)/ W) TV

and P A := AM_ Then we get

0 o) o) )
0 a) o) ... oV

22 @ Ao

PO 4= 40 =

0 alyall - alh
Thus the first column vector of A is reduced to the vector b1, where the column
vectors as, - - -, a, are subject to effects of P But, in the transforms that follow,
the vector b(1) := AN (: 1) is intact, and this becomes the first column of R.

Next we consider the transforms of the second column vector of A(Y). We define
a?, 4@ and b2 as

0 0 0

of) o) i

a? = ag? — u® = ag? , =10
ai) ai) 0

where 552 = %la®||. Let P be defined by

1 0 0
2 ... p®
P® = [ 4+ u® @®)T ()T = 0 Py . P%nz
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We see that P is an orthogonal matrix, for which all the elements of the first row
and column are zero except for (1,1)-element. Thus pre-multiplying A() by P(?)

yields
bgl) 1 @ (2

NG TN

R

PR AN = pAp) g = AR) = ags - ag)
0

where we note that the first row and column of A(?) are the same as those of A()
due to the form of P(2).

Repeating this procedure until the nnth column, we get an upper triangular matrix
A(™) of the form

prpr-1) _  p) 4= A4(n) = ]0% (2.13)
Since each component P\)| j =1, --- , n is orthogonal and symmetric, we get
1 2 n n —R-
A=pPOpR ... .pMgMm = g 0
where R € R"*"™ is upper triangular and Q) = [q1,- - ,¢n] € R™*"™ is orthogonal.
This completes a proof of lemma. O

The QR decomposition is quite useful for computing an orthonormal basis for a
set of vectors. In fact, it is a matrix realization of the Gram-Schmidt orthogonaliza-
tion process. Suppose that A € R™*"™ and rank(A) = n. Let the QR decomposition
of A be given by

A=[Qa QF

]0%:| = QAR, QA e Rmxn (2.14)

Since R is nonsingular, we have Im(A) = Im(Q 4), i.e., the column vectors of Q 4
form an orthonormal basis of Im(A), and those of Q% forms an orthonormal basis
of the orthogonal complement (Im A)~.

It should, however, be noted that if rank(4) = r < n, the QR decomposi-
tion does not necessarily gives an orthonormal basis for Im(A), since some of the
diagonal elements of R become zero. For example, consider the following QR de-
composition

121
A=la1 a2 az]=[q ¢ ¢3] |001
001

Though we see that rank(A) = 2, it is impossible to span Im(A) by any two vectors
from ¢, g2, g3. But, for rank(A) = r < n, it is easy to modify the QR decomposi-
tion algorithm so that the 7 column vectors (g1, - - - ,¢,) form an orthonormal basis
of Im(A) with column pivoting; see [59].
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2.5 Projections and Orthogonal Projections

Definition 2.2. Suppose that R™ be given by a direct sum of subspaces V and 'W,
ie.,

R*=V+W, vVnw = {0}

Then, x € R™ can be uniquely expressed as
T =v+w, vEV, weW (2.15)

where v is the projection of x onto V along W, and w is the projection of x onto W
along V. The uniqueness follows from V N'W = {0}. O

Figure 2.2. Oblique (or parallel) projection

The projection is often called the oblique (or parallel) projection, see Figure 2.2.
We write the projection operator that transforms = onto V along 'W as PHVW. Then,

we have v = P”VW(J:) and w = Pm; (z), and hence the unique decomposition of
(2.15) is written as
T = P”VW (z) + PW;(&:)

We show that the projection is a linear operator. For z, y € R", we have the
following decompositions

T=v+w, y=u-+z, v, u €V, w, z €W

Sincex+y=(w+u)+(w+2), u+v eV, w+z W, we see that v + u is the
oblique projection of z 4+ y onto V along W. Hence, we have

P||Vv\7(3j +y)=v+u= PHVW(-’E) + P||Vw(y)

Moreover, for any «, we get ax = av + aw, av € V, aw € W, so that awv is the
oblique projection of az onto V along W, implying that

Phy(az) = av = aPf (@)

From the above, we see that the projection P”VW is a linear operator on R™, so that it
can be expressed as a matrix.
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Lemma 2.4. Suppose that P € R"*™ is idempotent, i.e.,
pP:l=pP (2.16)
Then, we have
Ker(P) = Im(I, — P) 2.17)

and vice versa.

Proof. Letz € Ker(P). Then, since Px =0, we getz = (I — P)z € Im(I — P),
implying that Ker(P) C Im(I — P). Also, forany z € R", we see that P(I — P)z =
0, showing that Im(I — P) C Ker(P). This proves (2.17). Conversely, for any
z € R",letz = (I— P)z. Then, we have € Ker(P), sothat0 = Pz = P(I—P)z
holds for any 2z € R", implying that P2 = P. O

Corollary 2.1. Suppose that (2.16) holds. Then, we have
R" = Im(P) + Ker(P) (2.18)

Proof. Since any z € R™ can be written as z = Pz + (I — P)x, we see from (2.17)
that
R"® = Im(P) VIm(I — P) = Im(P) V Ker(P) (2.19)

Now let € Im(P) N Ker(P). Then we have x = Py, y € R* and Pz = 0. From
(2.16), we get 0 = Pz = P?y = Py = z and hence Im(P) N Ker(P) = {0}. Thus
the right-hand side of (2.19) is expressed as the direct sum. O

We now provide a necessary and sufficient condition such that P is a matrix that
represents an oblique projection.

Lemma 2.5. A matrix P € R**™ is the projection matrix onto Im(P) along Ker(P)
if and only if (2.16) holds.

Proof. We prove the necessity. Since, for any z € R*, v = Pz € Im(P), we have
P(Pz) = Pv = v = Px for all z, implying that P? = P holds. Conversely, to
prove the sufficiency, we define

V:={v|v=Pz, xeR"} W:={w|w= (- Pz, z e R"}
Since VNW = {0}, Lemma 2.4 implies that z € R" is decomposed uniquely as
x=Pr+ (I —-Plx=v+w, vEV, weW

From Definition 2.2, we see that P is the projection matrix onto V = Im(P) along
W = Ker(P). O

Example 2.1. Tt can be shown that P € R"*"™ is a projection if and only if P is
expressed as
P=TAT! (2.20)

where 7" is a nonsingular matrix, and A,. is given by
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A, = diag(1, -+, 1,0, ...,0) 2.21)

~
T

In fact, it is obvious that P of (2.20) satisfies P? = P. Conversely, suppose that
P? = P holds. Let

Im(P) = span{ty, - -, t.}, Ker(P) = span{t, 1, -+, tn}
Noting that z € Im(P) < Px = z and that z € Ker(P) < Px =0, we get

I, 0]

P[tl s by by e tn]:[tl RIS tn] [0 0

From Corollary 2.1, T = [ty --- t,] is nonsingular, showing that (2.20) holds.
Thus it follows from (2.20) that if P? = P, then rank(P) = trace(P). O

Definition 2.3. Suppose that V C R™. Then, any x € R" can uniquely be decom-
posed as
T =v+w, vEV, we Vvt (2.22)

This is a particular case with W = V* in Definition 2.2, and v is called the orthog-
onal projection of x onto V. See Figure 2.3 below. O

Figure 2.3. Orthogonal projection

For z, y € R™, we consider the orthogonal decompositions z = v + w; and
Yy = vy + wy, Where vy, v2 € V and wy, we € VL. Let P be the orthogonal
projection onto 'V along VL. Then, v; = Pz, vs = Py. Since vo L wy,v1 L wo,

(z, Py) = (v1 + w1, v2) = (v1, v2) = (v1, V2 + w2)
= (Pz, y) = (z, P'y)

holds for any z, y, so that we have P = PT. The next lemma provides a necessary
and sufficient condition such that P is an orthogonal projection.

Lemma 2.6. The matrix P € R"*"™ is the orthogonal projection onto Im(P) if and
only if the following two conditions hold.

(i) P2=P (i) P'=P (2.23)
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Proof. (Necessity) It is clear from Lemma 2.5 that P? = P holds. The fact that
PT = P is already proved above.

(Sufficiency) It follows from Lemma 2.5 that the condition (i) implies that
P is the projection matrix onto Im(P) along Ker(P). Condition (ii) implies that
Ker(P) = Ker(P') = (Im P)*. This means that the sufficiency part holds. O

Let A € R**" with rank(A) = r and Im(A4) = A C R". Let the QR decompo-
sition of A be given by (2.14). Then, it follows that Im(Q 4) = A. Also, define

Py =QaQ% € R (2.24)

It is clear that P;f = P, and P2 = Py, so that the conditions (i) and (ii) of Lemma
2.6 are satisfied. Therefore, if we decompose z € R™ as

z=z+vy, T €A, yeAt (2.25)

then we get x = P4z andy = (I — P4)z. Hence, P4 and I — P, are orthogonal
projections onto A(= Im A) and A=, respectively.

Lemma 2.7. Suppose that A is a subspace of R". Then, for any z € R", Pz is the
unique vector satisfying the following

min ||z — z|| = ||z — Paz||
xzeA

Proof. If z € A, then P,z = z. Now suppose that z ¢ A. For any z € A,
we have £ — Paz € A, but (I — P4)z is orthogonal to A. Thus it follows that
z — Pyz L (I — Py)z. Hence,

llz = 2l> = (I = Pa)z = (z = Paz)|” = (I = Pa)2|]” + [l — Paz|?

The right-hand side is minimized by z = P4z, which is unique. O

2.6 Singular Value Decomposition

Though the singular value decomposition (SVD) can be applied to complex matrices,
it is assumed here that matrices are real.

Lemma 2.8. Suppose that the rank of A € R™*" is r < min(n, m). Then, there
exist orthogonal matrices U € R™*™ and V' € R™*"™ such that

g1
02

it 0] VT, y, = , (2.26)

A=U\"¢

o

where UTU = 1,,, VIV = I,,, and
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01202220, >0,41=---=0,=0, p=min(m, n)

We say that o1, -- - , 0, are the singular values of A, and that (2.26) is the singular
value decomposition (SVD).

Proof. Suppose that we know the eigenvalue decomposition of a nonnegative def-

inite matrix. Since ATA € R"*™ is nonnegative definite, it can be diagonalized by
an orthogonal transform V' € R™"*". Let the eigenvalues of ATA be given by A1, As,

-+, An, and let the corresponding eigenvectors be given by vy, vs, - -+, v, € R”.
Thus we have ATAv; = \jv;,i =1, ---, n. However, since rank(A4) = r, we have
M > > >N >Ny ==X\, =0.Definec; =/\;, i =1, -, n,

and V = [V, V,], where
Vi =[viva -+ v, Vi = [Ur41 Vrg2 - U2
It then follows that VTV = I,, and that
ATAv; = o2, i=1, -, 1 (2.27a)
ATAv; =0, i=r4+1,---,n (2.27b)

Also we define U, := AV, Z‘;l € R™*" . We see from (2.27a) that ATAV, = V}Ei
holds and

UlU, =27 ATV, s = v (v e =1, (2.28)

In other words, the cglumn vectors in U,. form a set of orthonormal basis.
Now we choose U, € R™*(m~7) go that

U=[U, U,]e€RrR™™
is an orthogonal matrix, i.e., U TU = I,,,. Then it follows that

UTAV, UTAV,
UTAV, UTAV,

UT
UT

UTAV = AV, V] =
]

We see from (2.28) that the (1, 1)-block element of the right-hand side of the above
equation is X'y . From (2.27b), we get AV, = 0. Thus (1,2)- and ( 2)- block ele-

ments are zero matrices. Also, since U, and U, are orthogonal, U AV =0,
implying that (2, 1)-block element is also zero matrix. Thus we have shown that
2i 0
T _ + —
U"AV = 0 0] =X
This completes the proof. O

It is clear that (2.26) can be expressed as

A=Uxvt=U.x. VT (2.29)
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where U,. € R™*" and V. € R"*". Note that in the following, we often write (2.29)
as A = UX, VT, which is called the reduced SVD.

Let o(A) be the set of singular values of A, and o;(A) ith singular value. As
we can see from the above proof, the singular values of A are equal to the positive
square roots of the eigenvalues of ATA, je., for A € Rm*",

oi(4) =\ NATA),  i=1n

Also, the column vectors of U, the left singular vectors of A, are the eigenvec-
tors of AAT, and the column vectors of V, the right singular vectors of A, are the
eigenvectors of ATA. From (2.29), we have AV, = U, X, and ATU, = V, ¥, so
that the sth right singular vector and the ¢th left singular vector are related by

Avi = O;Uj;, ATUZ' = 0;U;, 1= 1, e, T

In the following, 0 (A) and o (A) denote the maximum and the minimum singular
values, respectively.

Lemma 2.9. Suppose that rank(A) = r < min(m,n). Then, the following proper-
ties (i)~(v) hold.

(i) Images and kernels of A and AT :
Im(A) = Im(U,.), Ker(A) = Im(V,)
Im(AY) = Im(V;), Ker(AT) = Im(T,)

(ii) The dyadic decomposition of A:
A= Z oiuvt (=UEVT)
=1
(iii) The Frobenius norm and 2-norm:
Al = o+ +02  [lAb =0
(iv) Equivalence of norms:

Al <[[Allr < VPI[All2;  p=min(m,n)

(v) The approximation by a lower rank matrix: Define the matrix Ay, by
k
Ak:Z aiuiv;r, k<r
i=1

Then, we have rank (Ay) = k, and

min |4 = B[z = [[A = Axll2 = ox1
rank(B)=k

where B € R™*"™,
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Proof. For a proof, see [59]. We prove only (v). Since
A — Ay = Udiag(0, -+, 0, g1, -+, 0p) V"

we have ||[A — Akllz = ok41.- Let B € R™*" be a matrix with rank k. Then, it
suffices to show that ||A — Bl|s > og41. Let{z; € R*,i=1,---, n —k} be or-
thonormal vectors such that Ker(B) = span{z1, -+, £p_ }. Define also Vi1 :=
span{vy, -+, Ukt1}. We see that dim Ker(B) = n — k and dim(Vg41) = k + 1.
But Ker(B) and V4 are subspaces of R", so that Ker(B) N Vy41 # {0}.

Let z € Ker(B) N Vig+1 C R™ be a vector with ||z|| = 1. Then it follows that

Bz = 0and
k+1

P
Az = Zaiui(v;rz) = Z Ui(vgrz)ui
i—1

i=1
Since (v} 2)? < [Jvi]|?|]z]|> = 1, we have
k41
IA = Bl3 > (A = B)zll® = | 42| = Y 0 (0] 2)* > 0ips
i=1
as was to be proved. O

Finding the rank of a matrix is most reliably done by the SVD. Let the SVD
of A € R™*™ be given by (2.26). Let E be a perturbation to the matrix A, and

{6;,1 =1, ---, p} be the singular values of the perturbed matrix A + E. Then, it
follows from [59] that

This implies that the singular values are not very sensitive to perturbations.
We now define a matrix B with rank » — 1 as

B = Udiag((fl, e, Op—1, 05 Tty O)VT

Then we have | A—B||2 = o,. Thus, for any matrix B satisfying || A— B||» < o, the
rank of B is greater than or equal to 7. Hence, as a “zero threshold,” if we can choose
anumber d < 0,., we can say that A has numerical rank r. Thus the smallest nonzero
singular value plays a significant role in determining numerical rank of matrices.

2.7 Least-Squares Method
In this section, we consider the least-squares problem:

min Az~ b, AE€R™",  beR" (2.31)

where m > n. Suppose that rank(A) = n, and let the QR decomposition of A be
given by
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A:Q|:‘§:|’ QERme’ RERTLXTL

Since the 2-norm is invariant under orthogonal transforms, we have

P =107 e - = | [ 8] - [2][. @mo=[2]
where b; € R", b, € R™ ™. Hence, it follows that
Az — bl[* = ||[Rz — by ||* + |baI?

Since the second term ||b||?

squares problem is reduced to

in the right-hand side is independent of x, the least-

T11 T12 *** Tin Z1 51

T22 -+ Ta2n T2 B2
Rx = b, = . . . =

0

Since R is upper triangular, the solutions z,,, T,_1, - - -, 1 are recursively computed
by back substitution, starting from z,, = S, /Tsn.

If the rank of A € R™*" is less than n, some of the diagonal elements of R are
zeros, so that the solution of the least-squares problem is not unique. But, putting the
additional condition that the norm ||z|| is minimum, we can obtain a unique solution.
In the following, we explain a method of finding the minimum norm solution of the
least-squares problem by means of the SVD.

Ton | | Zn Bn

Lemma 2.10. Suppose that the rank of A € R™*"™ is r < min(m, n), and the SVD
is given by A = UX VY, where U € R™*" and V' € R"™". Then, there exists a
unique solution X satisfying the Moore-Penrose conditions:

(i) AXA=A (i) (AX)T =AX
() XAX =X iv) (XxA)T=x4
The unique solution is given by
X=vX Ut =4 (2.32)
In this case, X = Al is called the Moore-Penrose generalized inverse, or the pseudo-

inverse, of A.

Proof. [83] It is easy to see that AT of (2.32) satisfies the above four conditions.
To prove the uniqueness, suppose that both X and Y satisfy the conditions. Then, it
follows that

X=XAX = (XATX = ATXTX = ATyTATXTX
=AY XA)X = ATYTX = YAX = (YAY)(AX)
YYTATXTAT = yyTAT =vAY =Y

as was to be proved. Note that all four conditions are used in the proof. O
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In the above lemma, if rank(A) = n, then A" = (ATA)~1AT and ATA = I,,. If
rank(A) = m, then we have AT = AT(AAT)~! and AAT = [,,,.

Lemma 2.11. Suppose that the rank of A € R™*™ is r < n. Then, a general
solution of the least-squares problem

min ||Az — b, Ae R™™ be R™
TzER™
is given by
=AM+ (I, — ATA)z, VzeR" (2.33)

Moreover, x = Atb is the unique minimum norm solution.

Proof. It follows from Lemma 2.7 that the minimizing vector x should satisfy
Az = Pab, where P, is the orthogonal projection onto Im(A), which is given by
UUT = AAT. Since A(ATb) = Pab, we see that z = AT is a solution of the least-
squares problem. We now seek a general solution of the form z = Afb + y, where y
is to be determined. Since

Ay = Az — A'b) = Az — Pab =0
we gety € Ker(A). Byusing A=UX, VT,

AtA=vy 'v'vz, vt =vv?
Since VVT = A'A is the orthogonal projection onto Im(AT) = (Ker A)*, the
orthogonal projection onto Ker(A) is given by I, — VVT = I,, — ATA. Thus y €
Ker(A) is expressed as

y= (I, — ATA)z, z€R"
This proves (2.33). Finally, since ATb and (I,, — At A)z are orthogonal, we get
[l]* = I1ATBI* + [|(Z — ATA)2|* > || AT0|®

where the equality holds if and only if 2 = 0. This completes the proof. O

Lemma 2.12. A general solution of the least-squares problem

min |[AX — Bllp, A€R™",  BeR™P

XERnXP
is given by
X=A"B+ (I, - A'A)Z, VZecR™? (2.34)
Proof. A proof is similar to that of Lemma 2.11. O

The minimum norm solution defined by (2.33) is expressed as

1771 —~ ufb
e=ATb=VE'UTb=) "y,

o
i=1 v
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This indicates that if the singular values are small, then small changes in A and b may
result in large changes in the solution z. From Lemma 2.9 (iv), |[|A — A,—_1]|2 = o,
Since the smallest singular value o, equals the distance from A to a set of matrices
with ranks less than r — 1, it has the largest effect on the solution . But, since the
singular values are scale dependent, the normalized quantity, called the condition
number,

g1

K(A) = | A2 - |AT]2 =

oy
is used as the sensitivity measure of the minimum norm solution to the data.

By definition, the condition number satisfies x(A) > 1. If k(A) is very large,
then A is called ill-conditioned. If k(A) is not very large, we say that A is well-
conditioned. Obviously, the condition number of any orthogonal matrix is one, so
that orthogonal matrices are perfectly conditioned.

2.8 Rank of Hankel Matrices

In this section, we consider the rank of Hankel matrices [51]. We assume that the
sequence hy, hs, --- below are real, but results are valid for complex sequences.

Definition 2.4. Consider the infinite matrix

hy hs hy -«
ho hg hy -+
H=|hshyhs--- (2.35)

where (i, j)-element is given by h;y;. This is called an infinite Hankel matrix,
or Hankel operator. It should be noted that H has the same element along anti-
diagonals. Also, define the matrix formed by the first k rows and | columns of H
by

3

hi hy hy -+ My
h2 h3 h4 Tt hl+1
Hy, = hs hy hs - hl+2 (2.36)

hi Pkg1 B2 -+ hrgi—1
This is called a finite Hankel matrix. O

Lemma 2.13. Consider the finite Hankel matrix H,, ,, of order n. Suppose that the
first | row vectors are linearly independent, but the first | + 1 row vectors are linearly
dependent. Then, it follows that det H; ; # 0.

Proof. Let the first [ 4+ 1 row vectors of H,, ,, be given by R, Ry, -+, Ry, Riy1.
Since, from the assumption, Ry, - - - , I are linearly independent, we see that R
is expressed as
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1
Ry = Z ap R g1
k=1

In particular, we have

1
hi=>» aghig, i=l+1 -, l+n (2.37)
k=1
Then the matrix formed by the first [ row vectors Ry, Ro, ---, Ry is given by
hi he - hy
ho hg cer B l
H,=|. . . . e R (2.38)

hy higi -+ hign—1

where the rank of this matrix is {.

Now consider the column vectors of H; ,,. It follows from (2.37) that all the
column vectors are expressed as a linear combination of the ! preceding column
vectors. Hence, in particular, the (I + 1)th column vector is linearly dependent on
the first [ column vectors. But since the matrix of (2.38) has rank [, the first / column
vectors are linearly independent, showing that det H;; # 0. O

Example 2.2. Consider a finite symmetric Hankel matrix
hi hy o g
ho hy - hupa

)

c Rn)(n
hn hn+1 tte h2n—1
Define the anti-diagonal matrix (or the backward identity)
0 1
1

In = e ™" (2.39)

Then it is easy to see that

hn hn+1 Tt hf2n71
hnfl hn ot h2n72
InHpp = : — : =T,
hy  hy - hy
where the matrix T, is called a Toeplitz matrix with ¢;; = h,_;4;, i.e., elements
are constant along each diagonal. Also, from J,, = Jg =J, 1 we see that J,, T is a
Hankel matrix for any Toeplitz matrix 7" € R". O
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Lemma 2.14. The infinite Hankel matrix of (2.35) has finite rank r if and only if

there exist r real numbers ay, as, - - - , a, such that
T
hi=> aghiy, i=r+1lr+2 - (2.40)
k=1

Moreover, 1 is the least number with this property.

Proof. Suppose that rank(H) = r holds. Then the first 7 4+ 1 rows Ry, R, - -,
R, are linearly dependent. Hence, there exists an | (< r) such that Ry, -+, R,
are linearly independent, and R, is expressed as their linear combination

1
Ry = E ap Ry pi1
k=1

Now consider the row vectors R;y1, Riya, -+, Riyi41, where ¢ is an arbitrary
nonnegative integer. From the structure of H, these vectors are obtained by removing
the first ¢ elements from Ry, Ry, ---, R4, respectively. Thus we have

1

Riyi41 = ZakRi+l—k+1a 1=0,1, - (2.41)
k=1

It therefore follows that any row vector of H below the (/4 1)th row can be expressed
in terms of a linear combination of the | preceding row vectors, and hence in terms
of linearly independent first / row vectors. Replacing [ by r in (2.41), we have (2.40).

Conversely, suppose that (2.40) holds. Then, all the rows (columns) of H are
expressed in terms of linear combinations of the first  rows (columns). Thus all the
minors of H whose orders are greater than r are zero, and H has rank 7 at most. But
the rank cannot be smaller than r; otherwise (2.40) is satisfied with a smaller value
of r. This contradicts the second condition of the lemma. O

The above result is a basis for the realization theory due to Ho and Kalman [72],
to be discussed in Chapter 3, where a matrix version of Lemma 2.14 will be proved.

2.9 Notes and References

¢ In this chapter, we have presented basic facts related to numerical linear algebra
which will be needed in later chapters, including the QR decomposition, the or-
thogonal and oblique projections, the SVD, the least-squares method, the rank of
Hankel matrices. Problems at the end of chapter include some useful formulas
and results to be used in this book.

e Main references used are Golub and Van Loan [59], Gantmacher [51], Horn and
Johnson [73], and Trefethen and Bau [157]. Earlier papers that have dealt with
the issues of numerical linear algebra in system theory are [94] and [122]; see
also the preprint book [125].
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e For the history of SVD and related numerical methods, see [60, 148, 165]. The
early developments in statistics, including the least-squares and the measurement
of uncertainties, are covered in [149].

2.10 Problems

2.1 Prove the following by using the SVD, where A € R™*", B € R**P,
(@) Im(A4) @ Ker(AT) = R™, Im(A") @ Ker(4) = R?
(b) Ker(AT) = (Im A)t, Im(AT) = (Ker A)*
(c) Im(A4) = AR" = Im(AAY), AIm(B) =Im(AB)

2.2 Prove the following matrix identities

AB| _[I BD7'|[A-BD7'C 0 I 0
CD| |0 I 0 D||DC1I

[ 1 o0][4 0 I A'B
“lcatrI||o D-CA'B||0 I

where it is assumed that A=! and D! exist.

2.3 (a) Using the above results, prove the determinant of the block matrix.

AB

det {C’D

} = det(A)det(D — CA'B)
= det(D) det(A — BD™'C)
(b) Defining A = I, and D = I,,,, show that
det(I,, — CB) = det(l,, — BC)
(c) Prove the formulas for the inverses of block matrices
{A B} - {Al +ABAICA? —AlBAl}
CcD B —ATtcA™! At
_ { ot —II'BD™! }
~|-D~'cn~' D'+D-'Ccu-'BD™!
where A:=D —CA'B,II :== A— BD 'C.For C = 0, we get

AB]™' [4' —41BD!
op| “|o D1

(d) Prove the matrix inversion lemma.

[A+BD 'C]'=At'-A'BD+CA B 'CcA!
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Show without using the result of Example 2.1 that if P is idempotent (P? = P),
then all the eigenvalues are either zero or one.

For P € R"*™, show that the following statements are equivalent.
(a) P2=P

(b) Im(P)+Im(l, — P)=R"

(¢) rank(P)+rank(l, — P)=n

Suppose that Z = [T U] € R**" is nonsingular, where T' € R**", U €
R**("=7) Let the inverse matrix of Z be given by

Z—l _ |:‘I/Jv:| , L c ]Rrxn7 1% c ]R("_T)X"

Then it follows that T L + UV = I,, and

o=l = 6]

Show that P := T'L is the oblique projection onto Im(7") along Ker(L), and
that ) := UV is the oblique projection onto Ker(L) [= Im(U)] along Im(7T') [=
Ker(V)].

In the above problem, define

L. =X
=[5 e=[a7)
Compute the projection P = T'L by means of L and V. Show that (2.16) is
satisfied if P has the following representation

po[EX] xewe
By using (2.29), prove the following.

(@) V. V.1 : the orthogonal projection from R™ onto Im(A™)

(b) V,V,T : the orthogonal projection from R™ onto Ker(A)

(c) U,UT : the orthogonal projection from R™ onto Im(A)

(d) U,UY : the orthogonal projection from R™ onto Ker(A™)
For A € R™*™ show that AT(AAT)t = At and (ATA)TAT = AT

210 Let A € R™*™ with m > n. By using the SVD, show that there exist an

orthogonal matrix () € R™*™ and a nonnegative matrix I/ € R"*™ such that
A=QII.
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Discrete-Time Linear Systems

This chapter reviews discrete-time LTI systems and related basic results, including
the stability, norms of signals and systems, state space equations, the Lyapunov sta-
bility theory, reachability, and observability, etc. Moreover, we consider canonical
structure of linear systems, balanced realization, model reduction, and realization
theory.

3.1 z-Transform

Let f = (f(0), f(1), ---) be a one-sided infinite sequence, or a one-sided signal.
Let z be the complex variable, and define

F(z) =) f(k)z"* 3.1)
k=0

It follows from the theory of power series that there exists p > 0 such that F'(z)
absolutely converges for |z| > p, but diverges for |z| < p. Then, p is called the
radius of convergence, and p = |z| is the circle of convergence. If the power series
in the right-hand side of (3.1) converges, F'(z) is called the one-sided z-transform of
f, and is written as

F(z) = 3[f1(2) (3.2)
Also, let f = (---, f(—1), f(0), f(1), ---) be a two-sided infinite sequence, or a
two-sided signal. Then, if

F(z)= Y f(k)z* (3.3)

k=—o0

does converge, then F'(z) is called a two-sided z-transform of f. If the two-sided
transform exists, it converges in an annular domain p; < |z| < pa.

It is obvious that the one-sided z-transform is nothing but a two-sided transform
of a sequence f with f(k) = 0, k = —1, —2, ---. Thus both transforms are
expressed as in (3.2).
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Lemma 3.1. Let A, r > 0. If the one-sided signal f satisfies
[f(R)] <A, k=01,

Then the z-transform 3(f](z) is absolutely convergent for |z| > r, and is analytic
therein.

Proof. The absolute convergence is clear from

(oo} (oo} _A
—k k|, |—k _
Z‘f(k)z ‘ §2Ar |z| 7% = | — a1 r/|z| <1
k=0 k=0
A proof of analyticity is omitted [36]. O

Similarly, if the two-sided signal f = (---, f(—1), f(0), f(1), - --) satisfies

Ark, k=0,1, -
Aré, k=-1,-2, - :0<7r; <ry

|7 ()] S{

then the two-sided transform F'(z) is absolutely convergent for 1 < |z| < ra, and is
analytic therein.

Example 3.1. (a) Consider the step function defined by

1 —0.1. -
l(k): ) k 07 )
0, k=-1,-2-

Then the z-transform of 1(k) is given by

Tk 1 z

e =3=*=, ' = F . k>
(b) For the (one-sided) exponential function f(k) = o*, k=0, 1, ---,

e =Y akr = L= F >l
k

Tl-arl 2-
=0
(c) Let the two-sided exponential function f be defined by

a*, k=01, -
f(k) =
b, k=-1, -2, ---

where 0 < a < 1 < b. Then, the two-sided transform is given by

3[11(z) = iakz*k + i vk = (2 Eaa;(z)i D)’ a<l|zl<b O
k=0

k=—o0
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Lemma 3.2. The inverse transform of F(z) is given by the formula

1
f(k) = ?{ F(z)zFtdz, k=0, £1, .- (3.4)
25 Jo
where C denotes a closed curve containing all the poles a;, i = 1, --- , p of F(2).

Thus f(k) is also obtained by
P
fk) = ZRes[F(z)zk_l, z = ajl, k=0, £1, ---
i=1

which is the sum of residues of F(2)2*~ at poles contained in C C C.
Proof. See [98,121]. O

Lemma 3.3. (Properties of z-transform)

(i) (Linearity)

3laf + Bgl(z) = a3[f](z) + £3]g](2), a, f:scalars

(ii) (Time shift) Let f be a one-sided signal with f(k) =0, k= -1, =2, ---. Let
o be a shift operator defined by (o f)(k) = f(k + 1). Then, the z-transform of
ol f is given by

AF(z), 1=0, -1, -

3ol fl(2) = =1
o f1z) zl[F(z)—Zf(k)z’k}, 1=1,2 -
k=0

It should be noted that for the two-sided case, the term consisting of finite sum
22;10 f(k)z=* does not appear in the above formula.

(iii) (Convolution) Consider the convolution of two-sided signals f and g, i.e.,

hk)= > fgk—1)= > f(k-1g(l)

l=—0c0 l=—

Let z-transforms of f and g be absolutely convergent and respectively be given
by

Flz)= Y f(k)z"  pi<lzl<p
k=—c0

and

oo

Gz)= > gk)z™"  ps<|z| <pa

k=—oc0

Then the z-transform of h is absolutely convergent and is given by
H(z) = F(2)G(2), p- <lz| <pt (3.5)

where p~ 1= max(py, p3) and pT := min(pa, ps).



44 3 Discrete-Time Linear Systems

(iv) Let the partial sum of a one-sided signal f be given by g(k) := f(0) + f(1) +
<+« + f(k). Then the z-transform of g has the form

Sl=, L FG) (.6)

(v) For the difference of f, i.c., g(k) == f(k) — f(k — 1), we have
30 -0 )G = (1 -2 HFGE) 6.7
Proof. See [98,121]. O

In the following, it is necessary to consider the case where

f:(:f(_1)7 f(O), f(]-)7 )

is a sequence of vectors or matrices. For a vector or matrix case, the z-transform is
defined componentwise. For example, let A(t) = (a;;(t)), t = 0, £1,---, where
t=1,---,mandj =1, -+, n. Then, the z-transform of the matrix function A(t)
is defined by

3lan®](z) -+ 3lan(®)](2)
3[AMD](2) = : :
3lami(®)](2) -+ 3lamn(8)](2)

3.2 Discrete-Time LTI Systems

Figure 3.1. Discrete-time LTI system

Consider a single-input, single-output (SISO) discrete-time LTI system shown in
Figure 3.1, where w is the input and y the output. We assume that the system is at rest
fort = -1, =2, .-+, ie,u(t) =0, y(t) =0, t < 0. Then the output is expressed
as a convolution of the form

t

y(t) = gku(t—k), t=0,1,--- (3.8)

k=0

where g = (g(0), g(1), ---) is the impulse response of the system. An impulse
response sequence satisfying g(¢t) = 0, t = —1, —2, - - - is called physically realiz-
able, or causal, because physical systems are causal.
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Let the z-transform of the impulse response g be given by
G(2) =) gk)z™ |z >p (3.9)

We say that G(z) is the transfer function from u to y. Let the z-transforms of u and
y be defined by u(z) and y(z), respectively'. It then follows from (3.8) and Lemma
3.3 (iii) that

y(z) = G(z)u(z) (3.10)

Example 3.2. Consider a difference equation of the form
y(t) + ary(t — 1) + azy(t — 2) + asy(t — 3)
= blu(t — 1) + bzu(t - 2) + bgu(t - 3)

Taking the z-transform of the above equation under the assumption that all the initial
values are zero, we get the transfer function of the form

b1 22 + bQZ + b3
22 +a1z2 +asz +az

G(z) =

This is a rational function in z, so that G(%) is called a rational transfer function. [
Most transfer functions treated in this book are rational, so that G(z) is expressed
as a ratio of two polynomials

G(z) = g, degb(z) < dega(z) (3.11)

where a(z) and b(z) are polynomials in z. We say that the transfer function G(z)
with deg b(z) < dega(z) is proper. It should be noted that since g(¢t) = 0, ¢t < 0,
the transfer function G(z) of (3.9) is always proper.

Definition 3.1. Consider the discrete-time LTI system with the transfer function
G(z) shown in Figure 3.1. We say that the system is bounded-input bounded-output
(BIBO) stable if for any bounded signal u, the output y is bounded. In this case, we
simply say that the system is stable, or G(z) is stable. O

Theorem 3.1. The discrete-time LTI system shown in Figure 3.1 is stable if and only
if the impulse response is absolutely summable, i.e.,

> )] < oo (3.12)
(=0

Proof. (Sufficiency) Let u be a bounded input with |u(¢)| < M. Then it follows
from (3.8) that

"For simplicity, we do not use the hat notation like @(z) and §(z) in this book.
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|<Zlg t—l|<MZ|g ()] < o0
=0

(Necessity) Suppose that the absolute sum in (3.12) diverges. Let My, k =
1, 2, --- be a divergent sequence. Then, there exists a divergent sequence tx, k =
1,2, --- such that Zfio lg()| > My, k=1,2,---.Define @ as

N )L g()>0
it —1) = {—1, g(l) <0

Then we have

Tk
=0

This implies that if the absolute sum of impulse response diverges, we can make the
output diverge by using the bounded input 4, so that the system is unstable. This
completes a proof of the theorem. O

In the following, a number A € C is called a pole of G(z) if G(A) = oo. It is
also called a zero of G(z) if G(\) =

Theorem 3.2. A discrete-time LTI system with a proper transfer function G(z) is
stable if and only if all the poles of the transfer function lie inside the unit disk.

Proof. Leta;, ---, a, be poles of G(z). We assume for simplicity that they are
distinct. Partial fraction expansion of the right-hand side of (3.11) yields

G A A A
(&) Ao A A
z z z—a z—ayp

Since the right-hand side is absolutely convergent for |z| > max; |a;|, the inverse
z-transform is given by

g(t) :A06t0+A1(a1)t+"'+AP(aP)ti t:o, ]-7

Now suppose that |a;| < 1,4 =1, ---, p. Then we have
P
Zlg )| < Ao+ ZIAllazl <0
i=1 t=0

Thus it follows from Theorem 3.1 that the system is stable. Conversely, suppose that
at least one a; is outside of the unit disk. Without loss of generality, we assume that
|a1| > 1and |a;| < 1,4 =2, ---, p. Then, it follows that

p
19O > [Aull(@)] = 3 [Aill(a)'] — | 4ol
=2
Note that the sum of the first term in the right-hand side of the above inequality
diverges, and that those of the second and the third terms converge. Thus, we have
Y o0 lg(t)| = oo, showing that the system is unstable. O
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3.3 Norms of Signals and Systems

We begin with norms of signals. Let u(t), t = 0, +1, - - - be m-dimensional vectors.
Define u = (---, u(—1), u(0), u(1), ---) be a two-sided signal. The 2-norm of u
is then defined by

lullz = | > Nlu(@®)]?

t=—o0

where || - || denotes the Euclidean norm of a vector. The set of signals u with finite
2-norm is a Hilbert space denoted by

l2(=00, 00) = {u [ |Jul]y < oc}

If the signal is one-sided, i.e., u(t) = 0, ¢ < 0, then the space is denoted by I5[0, o).
For u € ly(—o00, 00), the Fourier transform, or the two-sided z-transform, is
defined by

u(z) = Z u(t)z™, z=e

Then, the 2-norm of « in the frequency domain is expressed as

lulls = (5 [ atintiaias) ™ = (51 [ luteras) "

where 4" (jw) = 4T (—jw) denotes the complex conjugate transpose.

We now consider a stable discrete-time LTI system with the input v € R™ and
the outputy € RP. Let G(2) be a p x m transfer matrix, and G;;(z) the (4, j)-element
of G(z). Then, if all the elements G;;(z) are BIBO stable, we simply say that G(z)
is stable.

Definition 3.2. For a stable p x m transfer matrix G(z), two different norms can be
defined:

(i) Hy-norm:

I1G]» = (;ﬂ /w traCe[GH(ejw)G(ejw)]dw)1/2

-
where trace [ - | denotes the trace of a matrix.
(ii) Hoo-norm:
IGlle = sup  o[G(e’)]
—nr<w< T
where o -] denotes the maximum singular value of a matrix. Also, the H .-norm
can be expressed as

Gull2 2
Gl = sup IGullz _ (ol

— u € 1[0, oo
S fally S )y 2(0; )

This is called the l5-induced norm. O
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Lemma 3.4. Suppose that G(z) is stable, and satisfies ||G||oc < 0.
(i) If u € la(—o00, 00), then the output satisfies y € la(—00, 00).

(ii) Let the z-transforms of u and y be given by u(z) and y(z), respectively. The
inner product (y, u) is expressed as

S T (kyu(k) = erj / | uT(z)GT(z)u(z_l)iZ (3.13)
ke —o0 z|=1
1

_ T T jw T jw —Jjw
= 271-/ u (e')G (e?¥)u(e™*)dw (3.13b)

—T

Proof. (i) Sincey = G(2)u, it follows that

1 (™ . .
Il = 5 [ o)

_ ;ﬂ / " () GH (e5) G (e Yu (e )

R N .
< IIGIIio%/ ull (e )u(e™)dw = ||G1% ] ull3

Thus we get [|y|l2 < [|G]|oc|lull2 < oo.

(ii) From item (i), if u € ly(—o00, 00), the inner product yTu is bounded, so
that the sum in the left-hand side of (3.13a) converges. It follows from the inversion
formula of Lemma 3.2 that

o0 o0 T
RROTCEDS (;rj /| lly(z)zkdj> u(k)

k=—oc0 k=—oc0

1 T, ad w(k)zk dz
B 2mj /IZIIy ) <kz—:oo ® ) z
1 dz

= T uz™!
= gny [V OUE ]

Since y(z) = G(2)u(z), we get (3.13a). Letting z = e/ (-7 < w < 7) gives
(3.13b). O

3.4 State Space Systems

Consider an m-input, p-output discrete-time LTI system described by

z(t+ 1) = Az(t) + Bu(t) (3.14a)
y(t) = Cx(t) + Du(t), t=0,1, - (3.14b)
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where x € R™ is the state vector, u € R™ the input vector, and y € RP the out-
put vector. The matrices A € R**", B € R**™, C € RP*™, D € RP*™ are
constant. Given the initial condition x(0) and the inputs u(t), t = 0, 1, ---, we
see that the state vectors z(t), ¢ = 1, 2, --- are recursively obtained, and hence
the outputs y(¢), t = 0, 1, --- are determined. In the following, we simply write
Y = (A, B, C, D) for the LTI system described by (3.14).

By solving (3.14),

t—1
y(t) = CA'z(0) + Du(t) + > CA" ' 'Bu(i), t=0,1,---
i=0
Ifu(t) =0,t=0,1,---, the above equation reduces to
y(t) = CA'z(0), t=0,1,- (3.15)

This equation is called the zero-input response. Also, if (0) = 0, we have

t—1
y(t) = Du(t) + Y CA" ' ‘Bu(i), t=0,1,--- (3.16)
1=0

which is the response due to the external input u(t), and is called the zero-state
response. Thus the response of a linear state space system can always be expressed
as the sum of the zero-input response and the zero-state response.

In connection with the zero state response, we define the p X m matrices as

D, t=0
Gy = (3.17)
CA-'B, t=1,2, -

The (Go, G1, - -) is called the impulse response, or the Markov parameters, of the
LTI system X = (A, B, C, D).
Taking the z-transform of the impulse response, we have

G(z) = [é g} =D+C(zI—A)'B (3.18)

which is called the transfer matrix of the LTI system X' = (A4, B, C, D).

As shown in Figure 3.1, we can directly access the input and output vectors u
and y from the outside of the system, so these vectors are called external vectors.
Hence, the transfer matrix G(z) relating the input vector to the output vector is an
external description of the system Y. On the other hand, we cannot directly access
the state vector appearing in (3.14), since it is inside the system. Thus (3.14) is called
an internal description of the LTI system X' with the state vector z.

We easily observe that if an internal description of the system X = (A, B, C, D)
is given, the transfer matrix and impulse response matrices are calculated by means
of (3.18) and (3.17), respectively. But, for a given external description G(z), there
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exist infinitely many internal descriptions that realize the external description. In fact,
let T € R™*"™ be an arbitrary nonsingular matrix, and define

A=T71AT, B=T"!'B, C =T, D=D (3.19)
Then, a simple computation shows that
G(z)=D+C(zI—-A)'B
=D+ CT(zI-T'AT)'T™'B
=D+ C(zI - A)'B=G(2)
Thus the two internal descriptions ¥ = (A, B, C, D) and ¥ = (4, B, C, D)
have the same external description. The LTI systems X' and X' that represent the same
input-output relation are called input-output equivalent.
This implies that models we obtain from the input-output data by using system
identification techniques are necessarily external representations of systems. To get

a state space model from a given external representation, we need to specify a coor-
dinate of the state space.

3.5 Lyapunov Stability

Let v = 0 in (3.14). Then we have a homogeneous system
z(t+ 1) = Ax(t), z(0) = ¢ (3.20)

A set {z | = Ax} of state vectors are called the equilibrium points. It is clear that
the origin z = 0 is an equilibrium point of (3.20). If det(I — A) # 0, then z = 0 is
the unique equilibrium point.

Definition 3.3. If for any £(0) € R" the solution x(t) converges to 0, then the origin
of the system (3.20) is asymptotically stable. In this case, we say that the system
(3.20) is asymptotically stable. Moreover, A is simply called stable. O

We now prove the Lyapunov stability theorem.

Theorem 3.3. The following are equivalent conditions such that the homogeneous
system (3.20) is asymptotically stable.

(i) The absolute values of all the eigenvalues of A are less than 1, i.e.
[Ai(A)| < 1, i=1-,n (3.21)
It may be noted that this is simply written as p(A) < 1.
(ii) For any () > 0, there exists a unique solution P > 0 that satisfies

P=ATPA+Q (3.22)

The above matrix equation is called a Lyapunov equation for a discrete-time LTI
system.



3.6 Reachability and Observability 51

Proof. (i) From z(t) = A'z(0), we see that (3.21) is a necessary and sufficient
condition of the asymptotic stability of (3.20).
(i) (Necessity) Suppose that (3.21) holds. Then, the sum

P=>) (AT)QA'=Q+ A" (Z(AT)“QA“> A (3.23)
i=0 =1

converges. It is easy to see that P defined above is a solution of (3.22), and that
P > 0 since @) > 0. To prove the uniqueness of P, suppose that P, and P, are two
solutions of (3.22). Then we have

P, — P, = AT (P, — P)A = (A")*(P, — Py)AF

Since A is stable, P, = P, follows taking the limit £ — oc.

(Sufficiency) Suppose that the solution of (3.22) is positive definite, i.e., P > 0,
but A is not stable. Then, there exist an eigenvalue \g and an eigenvector £ € C"
such that

AE=XE,  ol>1, €#0 (3.24)

Pre-multiplying (3.22) by ¢ and post-multiplying by ¢ yield
ETPE = EMATP A¢ + €1CT 06 = |\oP€" PE+ €1Q¢
Thus it follows that (| \g|? — 1)ERPE + €HQ¢ = 0. Since | \g| > 1, the two terms in

the left-hand side of this equation should be zero. In particular, we have Q¢ = 0, so
that £ = 0, a contradiction. Thus A is stable. O

3.6 Reachability and Observability

In this section, we present basic definitions and theorems for reachability and ob-
servability of the discrete-time LTI system X' = (A, B, C, D).

Definition 3.4. Consider a discrete-time LTI system Y. If the initial state vector
z(0) = 0 can be transferred to any state £ € R" at time n, i.e., x(n) = £, by means
of a sequence of control vectors u(0), u(1), - -+ , u(n — 1), then the system is called
reachable. Also, if any state ©(0) € R™ can be transferred to the zero state by means
of a sequence of control vectors, the system is called controllable. O

We simply say that (A, B) is reachable (or controllable), since the reachability
(or controllability) is related to the pair (A, B) only.

Theorem 3.4. The following are necessary and sufficient conditions such that the
pair (A, B) is reachable.

(i) Define the reachability matrix as
€=[B AB --- A""'B] € R™*"™ (3.25)
Then rank(C) = n holds, or Im(C) = R™.
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(ii) For any A € C, rank[A — A\ B] = n holds.

(iii) The eigenvalues of A + BK are arbitrarily assigned by a suitable choice of
K e Rm>",

Proof. We prove item (i) only. By using (3.14) and (3.25), the state vector at time n
is described by

z(n) = A"2(0) + A” *Bu(0) + - - + ABu(n — 2) + Bu(n — 1)

u(n — ;)
— A"2(0) + € u(n:_ )
u(0)

Let 2(0) = 0. Then, we see that the vector 2(n) takes arbitrary values in R" if and
only if item (i) holds. For items (ii) and (iii), see Kailath [80]. O

From Definition 3.4, (A, B) is controllable if and only if there exists a sequence
of control vectors that transfers the state to zero at n. This is equivalent to

A"z(0) € Im(C), vz(0) € R*

Thus if A is nonsingular, the above condition is reduced to Im(€) = R™, which is
equivalent to item (i) of Theorem 3.4. Hence if A is nonsingular, we see that the
reachability and controllability of (A, B) are equivalent.

Theorem 3.5. Suppose that the pair (A, B) is not reachable, and let rank (C) =
ne < n. Then, there exists a nonsingular matrix T' such that A and B are decom-
posed as

A1 A B

-1 | A1 Are “1n_ | b1

T AT_[O Am}’ T B_[O} (3.26)
where A1y € R > By € R"*™ and where (A11, By) are reachable.

Proof. For a proof, see Kailath [80]. O

Definition 3.5. We say that (A, B) is stabilizable, if there exists a matrix K €
R™*™ such that A + BK is stable, i.e., p(A + BK) < 1. This is equivalent to the
fact that the system X is stabilized by a state feedback control u = K. O

Theorem 3.6. The following are necessary and sufficient conditions such that the
pair (A, B) is stabilizable.

(i) For any A € C with |A| > 1, we have rank[A — A\ B] =n.

(ii) Suppose that A and B are decomposed as in (3.26). Then, Ay is stable, i.e.
p(Azz) < 1 holds.

Proof. For a proof, see Kailath [80]. O
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We introduce the observability for the discrete-time LTI system, which is the dual
of the reachability.

Definition 3.6. Let u = 0 in (3.14). We say that the system is observable, if the
initial state (0) is completely recoverable from n output observations y(0), y(1),

-+, y(n — 1). In this case, we say that (C, A) is observable. This is equivalent
to the fact that if both the input and output are zero, ie., u(t) = 0, y(t) = 0 for
t=0,1, -+ ,n— 1, then we can say that the initial state is x(0) = 0. O

Theorem 3.7. The following are necessary and sufficient conditions such that the
pair (C, A) is observable.
(i) Define the observability matrix as

C

CA
0= . € R (3.27)

CAn—l

Then, we have rank(0) = n, or Ker(0) = {0}.
A—AI
C

(iii) All the eigenvalues of A + LC are specified arbitrarily by a suitable choice of
L € R**P.

(ii) For any A € C, it follows that rank [ ] = n holds.

Proof. For a proof, see [80]. O

Theorem 3.8. Suppose that (C, A) is not observable, and define rank(0) = n, <
n. Then, there exists a nonsingular matrix T such that A and C are decomposed as

A 0
T AT = |1 , CT =[C, 0 3.28
{Am A22] (1 0] (28
where A1y € R > Oy € RP*™e with the pair (C1, A11) observable. O

Now we provide the definition of detectability, which is weaker than the observ-
ability condition stated above.

Definition 3.7. Let w = 0 in (3.14). Iftlim y(t) = 0 implies that tli}m z(t) =0,
then (C, A) is called detectable.

Theorem 3.9. The following are necessary and sufficient conditions such that the
pair (C, A) is detectable.

(i) There exists a matrix L € R"*P such that A + LC is stabilized.
A— I

(ii) For any A\ € C with |\| > 1, rank [ c

] = n holds.
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(iii) Suppose that A and C are decomposed as in (3.28). Then p(Ass) < 1 holds.

Proof. According to Definition 3.7, we show item (iii). Define x = T'z. It then
follows from (3.28) that

i (t+1) = Anz(t) (3.29a)

T2 (t + 1) = AT (t) + As2To (t) (3.29b)
y(t) = Cra1(t) (3.29¢)

From (3.29a) and (3.29c¢),
y(t) Cy
y(t + 1) ClAll _
: = . I1 (t)
y(t+no — 1) Cl(All)"o—l

Since (C4, Aj1) is observable, the observability matrix formed by (Cy, A1) has

full rank. Thus we see that tlim y(t) = 0 implies that tlim Z1(t) = 0. Hence it
— 00 — 00

suffices to consider the condition so that Z»(t) converges to zero as Z; (t) tends to

zero. From (3.29b) it follows that

t—1
Zo(t) = (A22)'22(0) + Y (A)' " ' Aoy (k)
i=0
It can be shown that tlim Zo(t) = 0 holds, if Ays is stable (see Problems 3.6 and
—0o0

3.7). This shows that the detectability of (C, A) requires that unobservable modes
are stable. O

Theorem 3.10. Suppose that (C, A) is detectable (observable). Then A is stable if
and only if the Lyapunov equation

P=ATPA+CTC (3.30)

has a unique nonnegative (positive) definite solution P.
Proof. (Sufficiency) If A is stable, then the solution of (3.30) is given by
P=>Y (ATycTCcA’
i=0
Since Q@ = CTC > 0, we have P > 0. (P > 0 if and only if (C, A) is observable.)
For uniqueness of P, see the proof in Theorem 3.3.

(Necessity) Suppose that A is not stable. Then, there exists an unstable eigen-
value )\ and a nonzero vector ¢ € C" such that

AE=XE, ol21,  €#0 (3.31)
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Pre-multiplying (3.30) by ¢ and post-multiplying ¢ yield
§PE = AP A + £1CT 0 = Mo PE+ 1O C¢

so that we get (|Ag|? — 1)ERPE + HCTC¢ = 0. Since |A\o| > 1, both terms in the
left-hand side are nonnegative. Thus we have C¢ = 0, which together with (3.31)

shows that
Aé.:Aof, Cé.:ov |)‘0| Zla 5750

It follows from the item (ii) of Theorem 3.9 that this implies that (C, A) is not
detectable, a contradiction. This completes the proof. O

3.7 Canonical Decomposition of Linear Systems

We consider a finite-dimensional block Hankel matrix defined by

CB CAB CA’B--- CA"'B

CAB CA2B ... ... CA"B
H,,=| CA’B 1 € Renxmn (3.32)
CA™ 1B ... ... ... (CAM2B

This is called the Hankel matrix associated with the system X' = (A, B, C, D), so
that its elements are formed by the impulse response matrices of the discrete-time
LTI system Y.

In terms of the observability matrix O of (3.25) and the reachability matrix € of
(3.27), the block Hankel matrix is decomposed as H, , = OC. Thus we see that
rank(H,, ») = ny < min(n,, n,) < n (see Lemma 3.11 below).

The following is the canonical decomposition theorem due to Kalman [82].

Theorem 3.11. (Canonical decomposition) By means of a nonsingular transform,
the system ¥ = (A, B, C, D) can be reduced to X = (A, B, C, D) of the form

Teo(t+1) Ay Arp Ais Avy | [Zes() By
ﬂ_jco(t-l-l) _ 0 A22 0 A24 i’co(t) B2
ﬂ_iaa(t-i-l) = 0 0 A33 434 i’ga(t) + 0 u(t) (3.33a)
Tzo(t +1) 0 0 0 Ay | Zzlt) 0
Tes(t)
= ~ Teol(t)
y(t) =[0 C2 0 C4] Tuolt) + Du(t) (3.33b)
Tzo(t)

where the vector T.;(t) is reachable but not observable; Z.,(t) reachable and ob-
servable; T:5(t) not reachable and not observable; Tz,(t) observable but not reach-
able. Also, it follows that dim Z.5(t) = n. — np, dim T, () = np; dim Te6(t) =
n—"No— Ne + np;, dim Tz (t) = 1y — g O
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Figure 3.2. Canonical decomposition of LTI system

Figure 3.2 shows the canonical structure of the linear system X, where X5,
Y eo» Xzs, Xzo respectively denote subsystems whose state vectors are Z.5(t), Zeo(t),
Feo(t), Zeo(t), and the arrows reflect the block structure of system matrices in X,

As mentioned in Section 3.4, the external description of the system X is invariant
under nonsingular transforms, so that the transfer matrices and impulse response
matrices of X and ¥ are the same; they are given by

G(Z) = C_’z(ZI — /_122)_132 + D

and o ~
Gy = Co(Ag) ™ By, t=1,2,---

Hence we see that Xy := (Agy, By, C, D), X and X are all equivalent. This im-
plies that the transfer matrix of a system is related to the subsystem Y5 only. In other
words, models we obtain from the input-output data by using system identification
techniques are necessarily those of the subsystem Xs.

Given a transfer matrix G(z), the system ¥ = (A, B, C, D) is called a real-
ization of G(z). As shown above, the realizations are not unique. A realization with
the least dimension is referred to as a minimal realization, which is unique up to
nonsingular transforms. In fact, we have the following theorem.

Theorem 3.12. A triplet (A, B, C) is minimal if and only if (A, B) is reachable
and (C, A) is observable. Moreover, if both Xy = (A1, By, C1, D1) and Xy =
(A2, Ba, Co, Ds) are minimal realizations of G(z), then the relation of (3.19) holds
for some nonsingular transform T.

Proof. The first part is obvious from Theorem 3.11. We show the second part.
Define the reachability and observability matrices as

€ =[BL AiBy - A?ilBl]a Cy =[By A3By --- AQHBﬂ
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01 02
01A1 CQAQ
0, = . ; 0y = .
C A7 Cy A5~

Then, from the hypothesis, we have D; = D, and
Cy(2I — Al)*lBl = Cy(z] — A2)71B2
By using a series expansion of the above relation, it can easily be shown that
C1A B, = CyALB,,  1=0,1,---

This implies that O;C; = 05C,. Since O; and €; have full rank, we define two
matrices
T, = el (e~  Tp=(070,)"'0]0,

It can be shown that 7577 = I,,, implying that both 7% and 7> are nonsingular
with T5 = Tfl. Also, we have T5Cs = C; and O5T; = ;. Therefore it follows that
014:C1 = 0245Cy = OlelAng(?l

Since rank(O;) = n and rank(C;) = n, it follows that 4; = TflAng. Hence,
comparing the first block columns of Tfleg = €, yields Tleg = B;. Similarly,
from Q217 = O1, we have Cy, Ty = C4. This completes the input-output equivalence
of (Al, Bl, Cl) and (AQ, BQ, Cz) O

Example 3.3. Consider the transfer function of an SISO system

b12’n71+"'+bn
Zt4aiz" 4 tay

G(2) =

It is easy to see that both

0 1 0 0
Y = 5 ) [bn bnfl bl]
1 0
—Qp —Qp_1 -+ —Q1 1
and
0 —an, b,
~ 1 —An—1 bn—l

5= : , [0 --071]

1 —ay b1

are realizations of G/(z). It is clear that (A, B) is reachable and (C, A) is observable,

and that A = AT, B = CT, C = BT hold. O
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3.8 Balanced Realization and Model Reduction

For a given linear system, there exist infinitely many realizations; among others, the
balanced realization described below is quite useful in modeling and system identi-
fication. First we give the definition of two Gramians associated with a discrete-time
LTI system.

Definition 3.8. Let a realization be given by (A, B, C) with A stable. Consider two
Lyapunov equations defined by

P =APA" + BB" (3.34)

and

Q=A4'QA+cC'C (3.35)

Then, the solutions P and () are respectively called reachability Gramian and ob-
servability Gramian, where they are nonnegative definite. Also, the square roots of
the eigenvalues of PQ) are called the Hankel singular values of (A, B, C). O

Lemma 3.5. Suppose that A is stable. Then, we have
(A, B) : reachable < P >0; (C,A): observable < @ >0

Proof. (Necessity) Since A is stable, the solution of (3.34) is given by

[e%e} n—1
P=> A'BBY(A")' > A'BB(A")
1=0 1=0

Thus, if (A, B) is reachable, P > 0 follows.
(Sufficiency) Suppose that P is positive definite, but (A, B) is not reachable.
Then there exist 7 € C* and A € C such that

MA=x",  9"B=0, n#0
where |\| < 1. Pre-multiplying (3.34) by 1! and post-multiplying 7 yield
Py =gt APATy + BBy = [NPyPy = (1A Py =0
Since 1 — |A|? # 0, we get L Py = 0, implying that P is not positive definite, a

contradiction. This proves the first half of this lemma. The assertion for the Gramian
Q) is proved similarly. O

Definition 3.9. Let G(z) = (A, B, C, D) be a minimal realization. Then it is called
a balanced realization if the following conditions (i) and (ii) hold.

(i) The matrix A is stable, i.e., p(A) < 1.
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(it) The Gramians P and @) are equal, and diagonal, i.e., there exists a diagonal

matrix
g1
02
= ; 012092 -+ 20, >0
On
satisfying
Y =AYA' + BB", Yy=A'xa+ctc (3.36)
Note that o1, 02, - - - 0, are Hankel singular values of (A, B, C). O

Lemma 3.6. If (A, B, C, D) is a balanced realization, then the 2-norm of A, the
maximum singular value, satisfies ||A||2 = o(A) < 1. Moreover, if all the elements
of X are different, we have ||A||2 < 1.

Proof. We prove the first part of the lemma. Pre-multiplying the first equation of
(3.36) by AT and post-multiplying A, and then adding the resultant equation to the
second equation yield

ATAYATA -2 = —(ATBBTA+(C"0) (3.37)

Let A > 0 be an eigenvalue of ATA, and v € R™ a corresponding eigenvector. Then,
we have ATAv = Av, v # 0. Pre-multiplying (3.37) by vT and post-multiplying v
yield

(AN — 1)t Yv = —(wTATBBY Av +vTCTCv) <0

Since vT Xv > 0, we have A2 < 1. But |A| is a singular value of A, so that we get

||A]l2 < 1. For a proof of the latter half, see [127]. O
Partition X' into Xy = diag(o1, - , 0,) and Xy = diag(o,41, - +* , ), and
accordingly write A, B, C' as
Apr Arp B,
4o . B= . Cc=101 C 3.38
{Am Ago By Gy €] (3.38)

where A; € R"™*", B; € R"*™ and C, € RP*".

Lemma 3.7. Suppose that (A, B, C, D) is a balanced realization with A stable.
From (3.38), we define a reduced order model

GT(Z) = (A117 Bla ClaD) (339)

Then, the following (i) ~ (iii) hold?.
(i) The model G..(z) is stable.
2Unlike continuous-time systems, the discrete-time model G, (z) is not balanced. If, how-

ever, we relax the definition of balanced realization by using the Riccati inequalities rather
than Riccati equations, then G, (z) may be called a balanced realization [185].
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(ii) If 0 > 0,41, then G..(2) is a minimal realization.

(iii) Foranyr =1, --- |, n — 1, the following bound holds.
1G(e™) = Gr(€™)loo < 2(0r41 + -~ +04) (3.40)

Proof. First we show (i). From (3.38), the first Lyapunov equation of (3.36) is
rewritten as

210 [AnAp| |21 0 A Ais T+ B (BT B
0 Xy | [An Ax 0 Yo | [ Ao Aa By Lo

Thus we have

21 = A1121A'1T1 + A1222A'1T2 + BlBlT (341&)
Xy = A9y So AL, + Ay X1 AL, + ByBY (3.41b)
0= A11 ElAgl + Algngg‘Q + BlBQT (341C)

Let A € C be a non-zero eigenvalue of AT}, and v € C™ be a corresponding
eigenvector, i.e., AT,v = \v. Pre-multiplying (3.41a) by v™ and post-multiplying v
yield

1= M) 2w =01 A 5 AL + 08B Bl (3.42)

Since the right-hand side of the above equation is nonnegative, and since v/ v > 0,
we get |A| < 1.

Now suppose that |A| = 1. Then the left-hand side of (3.42) becomes 0. But,
noting that Y, > 0, we have

’UHA12 = 0, ’UHB1 =0

Since vH A;; = Ml it follows that

o o[ ] =0 w3 o

But from Theorem 3.4 (ii), this contradicts the reachability of (A, B). Hence, we
have |A| # 1, so that [A] < 1. A similar proof is also applicable to the second
equation of (3.36).

Now we show item (ii). From the second equation of (3.36),

T
X1 0| _ [ A A X1 0 A Aqs ct
[0 22] - {Am AZJ {0 22] [Azl AQJ * [c; (€1 G

Hence, the (1, 1)-block of the above equation gives
AL XAy + AL 554y — 3 = —CL Oy (3.43)

Suppose that (Cy, Aj1) is not observable. Then, there exist an eigenvalue A € C and
an eigenvector v € C" of Ay; such that
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A11’U = )\’U, 011) =0 (344)

We assume without loss of generality that ||v|| = 1. Pre-multiplying (3.43) by v!
and post-multiplying v yield
(|)\|2 — 1)’[)T21’U + UHAglngglv =0
Since
0'(21) S vHZ‘lv, UHAglngglv S ||A21U||20(22)

hold, we see that
(1= Ao (Z1) < [[Agiv]Po (L)

From Lemma 3.6, it follows that ||A||2 < 1, so that the norm of any submatrix of A
is less than 1. Hence, we get

[An] .
Ao
Since, from (3.44), ||A11v||? = |A|?, it follows that ||As;v]|? < 1 — |A|?, implying
that

<1 & |AuolP +||[Axnv|* <1

(1= [AP)o(Z1) < (1= [AP)o(Z2)

Since |A\|]? < 1, we have o(X1) < o(X2). But this contradicts the assumption that
o, > o0,+1.Hence we conclude that (C, Aj;) is observable. Similarly, we can show
that (A;1, By) is reachable.

For a proof of (iii), see [5,71, 185]. O

Similarly to the proof of Lemma 3.7 (i), we can show that the subsystem
(A2, Ba, C2) is also stable. Thus, since |A(A22)| < 1, we see that ol — Aas is
nonsingular, where || = 1, a € C. Hence we can define (4,, B, C,, D,.) as

A, = Ay + Aps(al — Agy) 1Ay (3.45a)
B, = By + Ay (al — Ay) 'B,y (3.45b)
C,=C1+ Colal — Ay) Ay (3.45¢)
D, =D+ Cy(al — Ayy) ™' By (3.45d)

Then, we have the following lemma.

Lemma 3.8. Suppose that (A, B, C, D) is a balanced realization. Then, we have
the following (i) ~ (iii).

(i) The triplet (A, B,, C,.) defined by (3.45) satisfies the following Lyapunov
equations

¥ =A% A" + B, BH, » =AUy 4, +ClC,

where Xy = diag(o1,- -+ ,0,). Hence (A,, By, C,.) is a balanced realization
witho(A,) < 1.
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(ii) If the Gramians X1 and X5 have no common elements, or o, > 041, then A,

is stable, and G, (z) = (A, B,., C., D,) is a minimal realization.

(iii) The approximation error is the same as that of (3.40), i.e.,
||G(ejw) — Gr(ejw)Hoo < 2(0r+1 + 4 Un)

Proof. We show (i). For simplicity, define & = al — Ays. Then by the definitions
of A, and B,

J:=A,5 A"+ B.BY

= (A11 + A1207 " A91) 21 (Ar1 + A2 @7 Agy)H
+ (B + A1o' By)(B; + A28 1 By)H
We show that J equals X by a direct calculation. Expanding the above equation
gives
J=An S AT + A D1 A5 07HAL + A Ay 51 AT

+ Ay @ YAy DAL HAL + BB + BB & M AL

+ A198 ' ByB] 4 A58 By Bf &7 H AT,
Substituting B BY, By B3, Bo B} and B, B} from (3.41) into the above equation,
we get

J =51 — A5 ALy — A1p 0 A5, 8 HAL — Ajp® 1 Ay 55 AT,
— At Agy S AL 7HAT, 4 A1y 071 5,071 AT,

Collecting the terms involving X5 yields
J—= 51 =Apd 11— o) 2 HAL, =0

since |a| = 1. This proves the first Lyapunov equation X, = A, Xy A% + B, B of
this lemma. In similar fashion, we can show X; = A%, 4, + CHC,.

(i) This can be proved similarly to that of (ii) of Lemma 3.7.

(iii) This part is omitted. See references [5,71, 108, 185]. O

The reduced order model G,.(z) obtained by Lemma 3.8 is called a balanced
reduced order model for a discrete-time LTI system G(z). The method of deriving
G, (z) in Lemma 3.8 is called the singular perturbation approximation (SPA) method.
It can easily be shown that G(a) = G..(«), and hence G(1) = G,(1). This implies
that the reduced order model by the SPA method preserves the steady state gains of
G.(z) and G(z). However, this does not hold for the direct method of Lemma 3.7.

Before concluding this section, we provide a method of computing Gramians of
unstable systems.
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Definition 3.10. [168, 186]. Suppose that G(z) = (A, B, C, D), where A is pos-
sibly unstable, but has no eigenvalues on the unit circle. Then, the reachability and
observability Gramians P and @ are respectively defined by

2m
p— 21 / (1 — A)*BBT(e79°1 — AT)~dg (3.46)
™ Jo
and 9
0= 21 / (79T — AT)"1CTC(edT — A)~1db (3.47)
™ Jo

It should be noted that if A is stable, P and ) above reduce to standard Gramians
of (3.34) and (3.35), respectively. O

Lemma 3.9. [168, 186] Suppose that (A, B) is stabilizable, and (C, A) is de-
tectable. Let X and'Y respectively be the stabilizing solutions of the algebraic Ric-
cati equations

X =AYX - XB[l,,+B'XB] 'B'X)A

" Y =AY -YCT[I, + cYCT] ey ) AT
Also, define

F=—(I,+B"XB)"'BT™xA, WwWw"=(I,,+B"XxB)™!
and

L=-Avc™ (1, +cyc™H=,  vv=(,+cych)!
Then, the Gramians P and @) respectively satisfy Lyapunov equations
P=(A+BF)P(A+ BF)" + B(I,, + B"XxB)~'BT (3.48)

and

Q=A+LC)"QA+LC)+C"(1,+CcYCchH)~'C (3.49)
Proof. Consider the following right coprime factorization
(21 — A)™'B = N(2)M~'(z)

where M (z) is an m X m inner matrix, satisfying M (2~1)M(z) = I,,,. Then, we
have the following realization

N(z) A+ BF BW
= I, 0 |, FeR™", WeR™™

where Ap := A + BF is stable. By using the above coprime factorization, we have
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2m
P=_ [ NEM )M (e )N (e )as
™ Jo
1 o 16 T 10
— J —J
= o |, N(?)N (e ?)ds
1 2m i i
=, / (T — Ap) *BWW'BY (e 9T — AL) 1ah
T Jo
2m
_ ;ﬂ /0 (€T — Ap) “B(In + B'XB) "B (e T — AT)'df

> ALB(I, + B*XB) 'B"(A})*
k=0

This shows that P satisfies (3.48). Similarly, let a left coprime factorization be given
by

Ozl — A)™' = M~ (2)N(2),

where M (z) is an n x n co-inner matrix with M (z)MT (2=') = I,,. A realization
of [N(z) M(z)] is then given by

[N(z) M(2)] = [A;;éc Ig ﬂ LeR™P, Ve R

Similarly, we can show that the observability Gramian () satisfies (3.49). O

Example 3.4. Suppose that (A, B, C) are given by

A 0 B
A:[OlAz], B:[ 1], C=[C1 O] (3.50)

where A; is stable, and A, is anti-stable. Define
P, = AP AT + BB}, Py = AyP,AY + ByBY
Q1= A?Qp‘h + C;FCh Qo= A;FQ2A2 + C;CQ
We wish to show that the reachability Gramian P and the observability Gramian ()

of (A, B, C) are givenby P = [](D)l Ig } and Q) = [%1 Cg ], respectively.
) 2
From (3.46), we have

2w
P= 21 / (€T — A) BB (e 7T — AT) " 1dp
™ Jo
_ ! . f (21 — A 'BBY (2711 — AT)! dz
21) J\21=1 z
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where |z| = 1 denotes the unit circle. According to (3.50), partition P as

Py Pro
P =
[Pm P22}

Noting that A; is stable and A, is anti-stable, we have

1 dz
Pu=, ?{ (21 = A)'BiBf (z7'1— A" =P,
) J)z|=1 z

1 dz

Py = I— AN 'ByBY (271 — AT =P,

2= o ?{le(z 2)" BaBy (2 2) N 2
1 dz

Py = I— AN 'ByBT(z7'1—- A1 =0
2= o 7{41(2 1)7 B1B, (2 2) )

We see that the third integral is zero since the integrand is analytic in |z| > 1, and
similarly P»; = 0. Hence we have P = B0 . That ) = @ 0 is proved in
0P 0 Q2

the same way.

3.9 Realization Theory

In this section, we prove basic realization results, which will be used in Chapter 6 to
discuss the deterministic realization theory.

Consider an infinite sequence Y = (Y3, Y5, ---) with ¥; € RP*™. Let the
infinite matrix formed by Y;, ¢ =1, 2,--- be given by

Vi Ya Vs oo
Yo Vs Yoo
H=vv,vs. - (3.51)

This is called an infinite block Hankel matrix. By using the shift operator o, we
define 0*Y = (Y41, Yis2, - --) and the block Hankel matrix as

Yig1 Yego Yigs -+
Yigo Yigys Yigq - --

o"H= Y3 Yiga Yigs - |» F=0,1,-- (3.52)
Definition 3.11. If (A, B, C) satisfies
Y, = CA-IB,  i=1,2, - (3.53)

then the triplet (A, B, C) is called a realization of H. O
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Let the k& x [ block submatrix appearing in the upper-left corner of the infinite
Hankel matrix H be given by

i Y5 Y30 Y
Yo Y3 Yy .- Y

Hy = Ys Yo Y5 --- Yipo (3.54)
Y Yiegg -0 oo Yiria

Moreover, we define the k-observability matrix and /-reachability matrix as

c
CA
Ok = . , € =[B AB --- A"!B] (3.55)

CA.k71

where A € R*"*™, B € R*™*™ C € RP*"™. If k > n (orl > n), then Oy (or G;) is
called an extended observability (or reachability) matrix, and the n-reachability (or
n-observability) matrix is simply called the reachability (or observability) matrix.

Let a be the smallest positive integer such that rank(C,;) = rank(C,). Then
this value of « is called the reachability index of ¥ = (A4, B, C'). Similarly, the
smallest positive integer § such that rank(Og41) = rank(Og) is referred to as the
observability index.

Lemma 3.10. If (A, B, C) is a realization of H, then
Hy = 04Cy, k,1=1,2,--- (3.56)
holds, and vice versa. In this case, we have the following rank conditions.
rank(Hj,;) < max{rank(0), rank(C;) } <n

Proof. Equation (3.56) is clear from Definition 3.11 and (3.55). The inequalities
above are also obvious from (3.56). O

From the canonical decomposition theorem (Theorem 3.11), if there exists a re-
alization of H, then there exists a minimal realization. Thus, we have the following
lemma.

Lemma 3.11. If (A, B, C) is a minimal realization, we have
rank(Hy ) = n, k,l=n,n+1,--. (3.57)

Proof. For k, [ > n, it follows that rank(Oy) = n and rank(C;) = n. Hence, we
get
0lOy=1,, €el =1,

From (3.56), this implies that
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I, = OLHk,lej = rank(OLHkJG;r) =n

Thus rank(Hy ;) > n holds. But from Lemma 3.10, we have rank(Hy;) < n. This
completes the proof. O

Now we define the rank of an infinite Hankel matrix. It may be, however, noted
that the condition cannot be checked by a finite step procedure.

Definition 3.12. The rank of the infinite block Hankel matrix H of (3.51) is defined
by
rank(H) = sup rank(Hy ) O
k.l
We consider the realizability condition of an infinite impulse response sequence

in terms of the concept of recursive sequence. Suppose that there existay, - -, a, €
R such that

Yotky1 + Z On—ip1 Yys = 0, k=0,1,-- (3.58)

i=1

holds. In this case, we say that Y = (Y7, Y5, - --) is a recursive sequence of order n.
The following theorem gives an important result for the realizability of the infinite
block Hankel matrix, which is an extension of Lemma 2.14 to a matrix case.

Theorem 3.13. An infinite block Hankel matrix H is realizable if and only if Y is
recursive.

Proof. To prove the necessity, let Y; = CA* 1B, i =1, 2, --- and let the charac-
teristic polynomial of A be given by

pa(z) =2"+a2" 4 ap izt ag
Then, from the Cayley-Hamilton theorem,
A"+ A" 4+t A+t a, =0

Pre-multiplying this by C A1 and post-multiplying by B yield (3.58).

The sufficiency will be proved by constructing a realization and then a minimal
realization. To this end, we consider the block Hankel matrix o* H of (3.52). Let the
n x n block submatrix appearing in the upper-left corner of ¢* H be given by

Yir1r Yo -0 Yigw

Yire Yies - Yot
(UkH)n,n — ] ] . ) € ]anan
Yk+n Yk+n+1 Tt Yk+2n71

Also, let the block companion matrix be defined by



68 3 Discrete-Time Linear Systems

0 I, 0 - 0
0 0 I, 0
M = : : : - : € jpxpen
0 0 0 - I
—anIp —an_llp —an_glp e —Oéllp

It follows from (3.58) that
M(c*H), , = (6" H),,,, k=01, -

Hence we have
M*H, , = (6"H)p.n, k=0,1,--- (3.59)

Since the (1,1)-block element of (¢* H),, ., is just Y1, we get

I,
0
Yig1 =, 0--- O)M*H, . | . |, k=01, ---
0
For notational convenience, we define EpT =[I, 0--- 0] € RP*P™ and
I, Y
0 _ Y
En=| . |€R™™,  B=Hy,,En=| . | €R™™
0 Y,
Also, define A = M and C = E,. Then, it follows that
Yiy1 = E) M*H,, ,E,, = CA*B, k=01, - (3.60)

This concludes that (4, B, C) is a (non-minimal) realization with A € RP"*Pn,
We derive a minimal realization from this non-minimal realization (A, B, C).
Define a block companion matrix

0 0 - 0 —aply
I, 0 -+ 0 —ap_1ly
N: 0 Im 0 _an72Im c Rmnxmn
00 -1 —aal,
Then, similarly to the procedure of deriving (3.59),
H, . N* = (c"H), n, k=01, --- (3.61)

Hence, from (3.59) and (3.61), we have M*H,,,, = H,, ,N¥, k=0, 1, ---.
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Suppose that rank(H,, ,,) = r. Let the SVD of H,, ,, be given by

20

_ T _
Hyn=UZV _U[O 0

} VI =U,Z, V] e Rmxmn

where X, > 0, ¥, € R™*", and UU, = I, V,'V, = I,, From Lemma 2.10, the
pseudo-inverse of H., , is givenby H} , = V, X 'U", so that we have H,, , H} ,, =
UU} and HY  Hp o =V, V.
By using the SVD and pseudo-inverses, Y41 of (3.60) is computed as
Vi1 = Ey M*H,, ,Ey, = EY H, n N*E,

=E H, H} H, N"E,

=E, H, H} ,M*H, ,E,,

=E,H, H} ,M"*H, ,H} H, ,E.,

=E UU'M*H, ,V,V,"Ep,

= (B0, 2\ (27 PUT M H,, Vo 57 ) (2 VB,

Define A := X, '2UTMH, .V, '* e R*", B := 2}/*VTE,, € R"™*™, and
C = EEUTL&/Q € RP*"_ Then we see that

A2 = (D, PUS M, Vo 202 (8, P U My V2 5,12)
= X VPUYMH, 2V, 2 U M, V, 5,012
= Y PUTMH, WHY  Hy o NV, 5712
= 5 VPUTMH,, NV, 572 = 57PUT M2 H, LV, 2

Thus, inductively, we can show that Y3 ; = CA*B, implying that (4, B, C) is a
minimal realization with A € R"*". O

It follows from this theorem that H is realizable if and only if the rank of H is
finite. If rank(H) = n, then the rank of a minimal realization is also n. It may be,
however, noted that this statement cannot be verified in an empirical way. But we
have the following theorem in this connection.

Theorem 3.14. Suppose that for Y;, i = 1, --- | 2n, the following conditions are
satisfied:
rank(H, ») = rank(Hp41,,) = rank(Hy, n41) =n

Then, there exists a unique Markov sequence Y = (Y1, Ya, -« -) with rank n such
that the first 2n parameters exactly equal the given Y;, i =1, -+ | 2n.
Proof. From rank(H, ,) = rank(H,11 ), the last p rows of Hy41,, must be

linear combinations of the rows of H, ,,. Hence, there exist p X p matrices C;, ¢ =
1, -+, n such that
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Y; =CiY1 4+ -+ ChYj .y, j=n+1 .-, 2n (3.62)

Similarly, from rank(H, ,) = rank(H, »+1), we see that the last m columns of
H,, »+1 must be linear combinations of the columns of H, ,,. Thus, there exist m xm
matrices D;, 1 = 1, --- , n such that

Y, =Y;,_1Di+---+Y,_,D,, j=n+1--,2n (3.63)
Now we recursively define Y;, j = 2n + 1, --- by means of (3.62), so that we
have an infinite sequence Y = (Y7, Y3, ---). By this construction, the rank of the

infinite block Hankel matrix H has rank smaller than pn. We show that the rank is
in fact n. To this end, we show that (3.63) also holds for j = 2n + 1, 2n + 2, ---.
From (3.62) and (3.63), for j > 2n

Y1 = Z CiYji1-: = Z C; ZY]‘H—i—ka
k=1

=1 =1
= Z (Z C’iY}Hik) Dy = 21/1‘+1ka1¢
k=1 \i=1 k=1

Thus the columns of H are linearly dependent on the first mn columns, and hence
we have rank(H) = rank(H, ,) = n.

Finally, the uniqueness is proved as follows. Suppose that we have two Markov
sequences Y'! and Y2, Define Y := Y! — Y. Then we see that the rank of Y is
at most 2n and that the first 2n parameters are zero. Therefore, from Theorem 3.13,
applying (3.58) with n := 2n, we have Y = 0. This completes the proof. O

3.10 Notes and References

e After a brief review of z-transform in Section 3.1, we have introduced discrete-
time systems and signals, together with their norms in Sections 3.2 and 3.3. Used
are references [98, 121, 144] for systems and signals and [36] for complex func-
tion theory.

o In Sections 3.4 to 3.7, state-space methods are considered, including Lyapunov
stability, reachability and observability of discrete-time LTI systems. In relation
to the realization and system identification, the canonical decomposition theorem
(Theorem 3.11) is theoretically most important because it tells us that the transfer
matrix of an LTT system is related to the reachable and observable subsystem
only. Thus the unreachable or unobservable parts of the system are irrelevant to
system identification. The basic references are [27, 80, 185].

e In Section 3.8, we present balanced realization theory and model reduction tech-
niques for discrete-time LTI systems by using [5, 108, 127, 168, 186]. It is well
known that for continuous-time systems, a reduced-order model derived from a
balanced realization by retaining principal modes is balanced, but this fact is no
longer true for discrete-time systems.
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e However, by using Lyapunov inequalities rather than Lyapunov equations, it can
be shown in [71, 185] that reduced-order balanced models are obtained from
higher-order balanced models. These model reduction theory and technique are
employed in Chapter 8 to consider the theory of balanced stochastic realization
and in Chapter 11 to compute reduced-order models in closed-loop identification
algorithms.

e The basic results for the realization theory treated in Section 3.9 are found in
[72,85,147]. The proof of Theorem 3.13 is based on [85] and the SVD technique
due to [184], and this theorem is a basis of the classical deterministic realization
theory to be developed in Chapter 6.

T
1
- b - Ly >
u x2
1
> by " >
T3
1
> b3 > W >

Figure 3.3. A diagonal system with n = 3

3.11 Problems

3.1 Suppose that the impulse response of G(z) is given by

—-1 k—1
gk:( 13; 3 k:1:2:

with gog = 0. Consider the stability of this system by means of Theorem 3.1.

3.2 Find a necessary and sufficient condition such that the second-order polynomial
f(2) := 22 + a1z + ay is stable. Note that a polynomial is called stable if all the
roots are inside the unit circle.

3.3 Derive a state space model for the system shown in Figure 3.3, and obtain the
reachability condition.

3.4 Consider a realization (4, b, ¢) of an SISO system with (4, b) reachable. Show
that A = €' AC and b = @b are given by

0 —Qn, 1

_ ]. —Qp_1 _ 0
A = . . s b =

1 —Q 0

where C is the reachability matrix.
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3.5 Show that (A, B) is reachable (stabilizable) if and only if (A + BK, B) is
reachable (stabilizable). Also, (C, A) is observable (detectable) if and only if
(C, A+ LQC) is observable (detectable).
3.6 [73] Let A € R**"™. Show that for any £ > 0, there exists a constant C' > 0
such that
|(4%)s

wherei,j = 1,--- ,n. Recall that p(A) is the spectral radius (see Lemma 2.1).

3.7 Consider a discrete-time LTI system of the form

where f(t) € R" is an exogenous input, and A € R**™ is stable. Show that if
[lf(®)|| — 0, then x(t) converges to zero as t — oc.

3.8 Define the system matrix

56 =" 3

Show that the following equality holds:
rank.S(z) = n + rank.G(z)

where rank. denotes the maximal rank for z € C; note that this rank is called
the normal rank.

3.9 [51] Consider the Hankel matrix H of (3.51) with scalar elements Y; = h;,
i =1, 2,---. Then, H has finite rank if and only if the series
h h:
R(z):=""4 2 +-..

z 22
is a rational function of z. Moreover, the rank of H is equal to the number of
poles of R(z).

3.10 Show that the sequence {gx, k = 1, 2, - - - } in Problem 3.1 cannot have a finite
dimensional realization.
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Stochastic Processes

This chapter is concerned with discrete-time stochastic processes and linear dynamic
systems with random inputs. We introduce basic properties of stochastic processes,
including stationarity, Markov and ergodic properties. We then study the spectral
analysis of stationary stochastic processes. By defining Hilbert spaces generated by
stationary processes, we discuss the optimal prediction problem for stationary pro-
cesses. Finally, we turn to the study of linear stochastic systems driven by white
noises, or Markov models, which play important roles in prediction, filtering and
system identification. We also introduce backward Markov models for stationary
processes.

4.1 Stochastic Processes

Consider a physical variable z that evolves in time in a manner governed by some
probabilistic laws. There are many examples for these kinds of variables, including
thermal noise in electrical circuits, radar signals, random fluctuation of ships due to
ocean waves, temperature and pressure variations in chemical reactors, stock prices,
waves observed in earthquakes, efc. The collection of all possible variations in time
of any such variable is called a stochastic process, or a time series.

To be more precise, a stochastic process is a family of real valued (or complex
valued) time functions, implying that a stochastic process is composed of a collec-
tion or ensemble of random variables over an index set, say, 7'. Let {2 be a sample
space appropriately defined for the experiment under consideration. Then, a stochas-
tic process is expressed as {z(t,w), t € T'}, where w € (2. For a fixed t = t1, we
have a random variable x(¢1, -) on the sample space (2. Also, if we fix w = wy, then
z(-, wy) is a function of time called a sample function. This definition of stochastic
process is very general, so that we usually assume a suitable statistical (or dynamic)
model with a finite number of parameters for analyzing a random phenomenon (or
system) of interest.

If the index setis R = (—oc, oc), or the interval [a, b] C R', then the process is
called a continuous-time stochastic process. If, on the other hand, the index setis Z =
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{t =0, £1, - - - }, we have a discrete-time stochastic process, or a time series. In this
book, we consider discrete-time stochastic processes, so that they are expressed as
{z(t), t =0, £1,---}, {z(t)}, or simply = by suppressing the stochastic parameter
w € .

Consider the distribution of a stochastic process {z(t)}. Let 1, --- , t be k
time instants. Then, for a,--- ,a; € R, the joint distribution of x(t1), - -+ , x(tx)
is defined by

P{l’(tl <(11,"' tk)<ak}

/ / Dty 5 (X1y - -, Tx)dxy - - - day, 4.1)
where py, ... ¢, (Z1, - - -, @) is the joint probability density function of z(t1), - -,
z(ty ). The joint distribution of (4.1) is called a finite dimensional distribution of the
stochastic process at ¢, - - - , ;. The distribution of a stochastic process can be de-

termined by all the finite distributions of (4.1). In particular, if any finite distribution
of x is Gaussian, then the distribution of x is called Gaussian.

Example 4.1. A stochastic process {v(t), t = 0, 1, ---} is called a white noise, if
v(t) and v(s) are independent for any ¢ # s, i.e.,

Prs(0(t), v(s)) = pe(v(t))ps (v(s)),  t#s

The white noise is conveniently used for generating various processes with different
stochastic properties. For example, a random walk z(t) is expressed as a sum of
white noises

z(t) =v(l) +v(2) + - - - + v(t), t=1,2,--- 4.2)
with 2(0) = 0. It thus follows from (4.2) that
z(t) =z(t — 1) + v(t), z(0) =0 (4.3)

Statistical property of the random walk is considered in Example 4.3. O

4.1.1 Markov Processes

Let {z(t),t = 0, £1, - -} be a stochastic process. We introduce the minimal o-
algebra that makes {x(s), s < ¢t} measurable, denoted by ¥, = o{x(s), s < t}. The
o-algebra J; satisfies Iy, C Fy,, t1 < to, and is called a filtration. It involves all the
information carried by z(t), z(t — 1),- - -

Suppose that for a € R and ¢;4; > i, we have

Pla(tiy) <a| Iy} = Pla(tis) <a

= P{z(tk+1) < a|z(tr)} 4.4)
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Then we say that {«(¢)} has Markov property. In terms of the conditional probability
density functions, the Markov property is written as

p(a(te) | w(tk-1), -+, 2(t1)) = p(e(ty) [ 2(te—1)) (4.5)

A stochastic process with the Markov property is called a Markov process. The ran-
dom walk z(t) in Example 4.1 is a Markov process, since for any ¢t > s > 0,

p(x(t) | 2(s = 1), --- 2(1)) = p(z(?) | #(s — 1))

Lett; <ty < -+- < tr < tg41. Then, for a Markov process, the conditional
probability of (tr+1) given F;, depends only on z(tx), and is independent of the
information ¥y, _,. Let F;,_, be the past, x(tx) present, and x(¢1) the future.
Then, for Markov processes, the information for the present state z(t;) makes the
past and the future independent. Also, by using Bayes’ rule, the joint probability
density function of a Markov process is expressed as

p(m(tl)a ) x(tk)) :p(x(tk) | x(tl)a Ty $(tk71))p($(t1), o 7$(tk*1))
=p(a(tr) | z(tr—1))p(@(t1), -, x(tr-1))

Continuing this procedure, we get

k

p(z(t), -, z(tr) = pla(t)) [ p(e(ts) | 2(ti-1))

i=2

We therefore see that the joint probability density function of a Markov process is
determined by the first-order probability density functions p(z(t;)) and the transition
probability density functions p(z(t;) | z(t;—1)). Also, since

p(x(ts), z(ti1))
p(x(ti-1))

we can say that the distribution of a Markov process is determined by the first- and
second-order probability density functions p(z(¢;)) and p(z(t;), z(ti—1)).

p(z(t) [ z(ti1)) =

4.1.2 Means and Covariance Matrices

Let {x(t), t =0, £1, - - } be a stochastic process. Given the distribution of {z(t)}
of (4.1), we can compute various expectations associated with the stochastic process.
In particular, the expectation of the product z(t1) - - - z(t) is called the kth-order
moment function, which is given by

M(ti, -+, tr) = E{z(t1) tr)}

/ / LDty ety (X1, oo, wp)day - dy,
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where E{-} denotes the mathematical expectation.

In the following, we are mainly interested in the first- and second-order moment
functions, which are respectively called the mean function and the (auto-) covariance
function; they are written as

pa(t) = E{z(t)},  Awa(t,s) = E{[2(t) — pa(t)][2(s) — pa(s)]}
The covariance function is also written as cov{z(t), z(s)}, and in particular,
o2(t) = cov{z(t),z(t)} = Aza(t,t)

is called the variance of z(t). Stochastic processes with finite variances are called
second-order processes.

Example 4.2. Let {z(t), t = 0, £1, - - - } be a Gaussian stochastic process. Let the
mean and covariance functions be given by p. (t) and o (¢, s), respectively. Then, the

joint probability density function of z(t1), - - - , z(t) is expressed as
Pty i (@1, o k)
1 1<
= @m)k2| D2 eXp{_Q D T @i = pat)(w; — ﬂz(tj))}
ij=1

where ¥ = (o(t;, t;)) € RF** is the covariance matrix, and Zigl denotes the
(i, j)-element of the inverse X 1. If z(t) is a white noise, we see that X becomes a
diagonal matrix. O

Before concluding this section, we briefly discuss vector stochastic processes.
Let {z(t), t =0, £1, - - - } be an n-dimensional vector process, i.e.,

I (t)
z(t) = |
Zn (1)

where x;(t) are scalar stochastic processes. Then we can respectively define the mean
vector and covariance matrix as

My (1)

i (1)

and
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where Z(t) := z(t) — . (t). We see that the diagonal elements of A, (t, s) are the
covariance functions of {x;(t), t = 0, £1, - - - }, and the non-diagonal elements are
the cross-covariance functions of z;(¢) and x;(t), i # j.

4.2 Stationary Stochastic Processes

Consider a stochastic process {x(¢), t = 0, &1, - - - } whose statistical properties do
not change in time. This is roughly equivalent to saying that the future is statistically
the same as the past, and can be expressed in terms of the joint probability density
functions as

Dty, -ty (331; . mk) :pt1+l7---,tk+l($1; . wk): =0, +1,--- (4.6)

If (4.6) holds, {x(t)} is called a strongly stationary process.
Let {z(t), t = 0, £1, - - - } be a strongly stationary process with the finite kth-
order moment function. It follows from (4.6) that

M(ty, -+, te) =M@ +1, -ty +1)
:M(tl _tk: "':tkfl _tkao); lZO, :i:]-a (47)

In particular, for the mean and covariance functions, we have
pa(t) = E{z(t)} = pa(0), Aaa(t, 8) = Aaa(t — s, 0)

Thus, for a strongly stationary process with a finite second-order moment, we see
that the mean function is constant and the covariance function depends only on the
time difference. In this case, the covariance function is simply written as A, (t — s)
instead of A, (t, ).

Let {z(¢),t = 0, £1, ---} be a second-order stochastic process. If the mean
function is constant, and if the covariance function is characterized by the time dif-
ference, then the process is called a weakly stationary process. Clearly, a strongly
stationary process with a finite variance is weakly stationary; but the converse is not
true. In fact, there are cases where the probability density function of (4.6) may not
be a function of time difference for a second-order stationary process. However, note
that a weakly stationary Gaussian process is strongly stationary.

Example 4.3. (Random walk) We compute the mean and variance of the random
walk considered in Example 4.1. Since v is a zero mean Gaussian white noise with
unit variance, we have E{v(t)} = 0 and E{v(t)v(s)} = d:s. Hence, the mean of
z(t) becomes

we(t) = E{v(1) +v(2)+---+v(t)} =0
Since z(t) —x(s) = Zzzsﬂv(i) and z(s) = Y_;_, v(k) are independent for ¢ > s,
we get

Aaa(t, ) = E{z(t)a(s)} = B{(x(t) — 2(s)z(s)} + E{(a(5))’} = s
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Similarly, for ¢ < s, we get A, (¢, s) = t. Thus the covariance function of the ran-
dom walk is given by A, (¢, s) = min(¢, s), which is not a function of the difference

t — s, so that the random walk is a non-stationary process. O
We now consider a second-order stationary process {z(t), t = 0, 1, ---}.
Since the mean function y, is constant, we put z(¢) := z(t) — u.. Then, without

loss of generality, we can assume from the outset that a stationary process has zero
mean. Moreover, being dependent only on the time difference ¢ — s, the covariance
function is written as

Ape (D) = E{z(t + D)z(t)}, l=0,=%1,--- (4.8)
Lemma 4.1. The covariance function A, (1) has the following properties.
(i) (Boundedness) |[Apz(D)] < Agz(0) = 02, 1 =+£1, £2, ---
(ii) (Symmetry) Apa (D) = A (1), 1=1,2, -

(iii) (Nonnegativeness) Foranyly, ---, 1, € Z; a1, --- , a, € R we have
Z aiakAzz(li - lk) Z 0
i k=1

Proof. Item (i) is proved by putting £ = z(l), n = 2(0) in the Schwartz inequality
|E{¢n}? < B{&€}E{n?}. Item (ii) is obvious from stationarity, and (iii) is obtained
from E{|S0, aiz(l:)|*} > 0. O

Consider a joint process {z(t), y(t), t = 0, £1, --- } with means zero. If the

vector process w = y is stationary, then we say that = and y are jointly stationary.

Since the covariance matrix of w is given by

—s{ |7 1) o v

= cov{w(t + Dw(t)} 4.9)

Apa(t+1,1) Ay (t+1,1)
Ay (t+1,8) Ayy(t+1,1)

the stationarity of w implies that the four covariances of (4.9) are functions of the
time difference [ only. The expectation of the product z(t + 1)y(t), i.e.,

Aoy () = E{z(t + Dy(t)} (4.10)

is called the cross-covariance function of x and y. If A,,(I) = 0 for all [, then two
processes z and y are mutually uncorrelated or orthogonal.

Lemma 4.2. The cross-covariance function Ay, (1) has the following properties.
(i) (Anti-symmetry) Ny (1) = Ay (1), 1=1,2,---
(ii) (Boundedness) | Ay (D)]? < Az (0)A4,,(0), l=+1,£2, .-

Proof. (i) Obvious. (ii) This is easily proved by the Schwartz inequality. O
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4.3 Ergodic Processes

A basic problem in analyses of stationary stochastic processes is to estimate statis-
tical parameters from observed data. Since the parameters are related to expected
values of some function of a stochastic process, we study the estimation problem of
the mean of a stationary stochastic process.
Suppose that {z(t), t = 0, £1, --- } is a second-order stationary process with
mean zero. Define a time average of the process by
1 N

rea (1) ngnOOQNHt;Nm(tH)m(t), 1=0,+1, (4.11)

This quantity is also called the (auto-) covariance function. The covariance function
of (4.8) is defined as an ensemble average, but 7, (I) of (4.11) is defined as a time
average for a sample process

v= (-, 2(-1), 2(0), 2(1), ---)

For data analysis, we deal with a time function, or a sample process, generated
from a particular experiment rather than an ensemble. Hence, from practical points
of view, the definition of moment functions in terms of the time average is preferable
to the one defined by the ensemble average. But, we do not know whether the time
average 7. () is equal to the ensemble average A, (1) or not.

A stochastic process whose statistical properties are determined from its sample
process is called an ergodic process. In other words, for an ergodic process, the time
average equals the ensemble average. In the following, we state ergodic theorems for
the mean and covariance functions.

We first consider the ergodic theorem for the mean. Let  be a second-order
stationary stochastic process with mean p,, and consider the sample mean

1
m(N) =, 1 t;Nx(t) (4.12)

Then, we see that E{m(N)} = p,, which implies that the mathematical expectation
of m(IN) is equal to the ensemble mean. Also, the variance of m () is given by

R ’
aen 3260 0]
t=—N
N N

1
T (2N +1) 2, 2 Auwlt=s)

t=—N s=—N
2N

_ 1 ||
_2N+1k§N<1 2N+1>A“(k) (4.13)

Thus we have the following theorem.

E{(m(N) - p)?} = B
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Theorem 4.1. (Mean ergodic theorem) A necessary and sufficient condition that
lim m(N) = p, holds in the quadratic mean is that

N—oo
lim 1 QXN: (1 _ I ) Aza(k) =0 (4.14)
N—oo 2N +1, &~ 2N +1

Proof. For a proof, see Problem 4.2. O

We see that if llim Az (1) = 0, then the Cesaro sum also does converge to zero,
— 00

ie.,

N
m Ly _

holds, and hence (4.14) follows (see Problem 4.3 (b)).

Next we consider an ergodic theorem for a covariance function. Suppose that
x is a stationary process with mean zero. Let the sample average of the product
z(t + 1)z(t) be defined by

1 N
Tz (l; N) = ON 41 t:Z;Nx(t + Dxz(t) (4.16)
Obviously we have
1 N
E{ree(;N)} =y >0 Bzt +De(t)} = 4w ()
t=—N

so that the expectation of r,, (I; V) equals the covariance function A, (1).
To evaluate the variance of 7, (I; N), we define £(t) = z(t + 1)z(t), and apply
the mean ergodic theorem to £(t). We see that g = E{{(t)} = A..(l) and that

Agg(k) = E{[x(t + 1+ k)t + k) — pellx(t + 1) (t) — pel}
= E{a(t+ 1+ k)z(t + k)z(t + Dz(t)} — pf 4.17)

Also, similarly to the derivation of (4.13), it follows that

E{lree(EN) = Ao (D} = E

S S L IR P
T2N+1, IN4+1) 7%

=—2N

Thus, we have an ergodic theorem for the covariance function.
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Theorem 4.2. (Covariance ergodic theorem) A necessary and sufficient condition
that
lm 7. (l; N) = Az () (4.18)
N—oco
holds in the quadratic mean is that

1 2N |k;|
B 2N+1k§N <1_2N+1> Age(k) =0 (4.19)

Moreover, suppose that x is a Gaussian process with mean zero. If the condition

N

1 .
li A2 = 4.2
RIS SERCRY a2
is satisfied, then (4.19) and hence (4.18) holds in the quadratic mean.
Proof. See Problem 4.4. O

Example 4.4. Consider a zero mean Gaussian process z with the covariance function
Ape(l) = 0%d, 1 =0, %1, --- (0 < |a] < 1, 0% > 0) (see Figure 4.2 below).
Since (4.15) and (4.20) are satisfied, Theorems 4.1 and 4.2 indicate that a stochastic
process with exponential covariance function is ergodic. O

4.4 Spectral Analysis

We consider a second-order stationary process {z(t), t = 0, %1, ---} with mean
zero. Suppose that its covariance function {A,,(I), I = 0, £1, ---} satisfies the
summability condition
> [ Awa(D)] < 00 421
l=—o0

Definition 4.1. Suppose that the covariance function satisfies the condition (4.21).
Then, the Fourier transform (or two-sided z-transform) of A..(l) is defined by

Bon(2) = Y Awal(l)z (4.22)
l=—o0
This is called the spectral density function of the stochastic process {x(t)}. O

Putting z = e/¥, —m < w < m, the spectral density function can be viewed as a
function of w (rad)

Bop(w) = Y e h(l), -—T<w<m (4.23)

l=—
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We observe from the definition (4.23) that the spectral density function shows the
distribution of power of the stationary process in the frequency domain.

It is well known that the covariance function is expressed as an inverse transform
of the spectral density function as

_ 1 -1
L) =, /M:1 B, (2)2Ldz (4.242)
1 [" .
=, / elP . (w)dw, =0, £1, - (4.24b)
L -

The relations in (4.24) are called the Wiener-Khinchine formula. We see from (4.22)
and (4.24a) that the covariance function and spectral density function involve the
same information about a stationary stochastic process since there exists a one-to-
one correspondence between them.

If the sampling interval is given by At, then the spectral density function is de-
fined by

. _ N —juAtl T ™
Boo(v; At) = At l;me Aga (1), A<V < o (4.25)
and its inverse is
1 7T/At )
Ape(l) = / eVAUG  (v; Atydy,  1=0, %1, - (4.26)
27 —m /At

It should be noted that w in (4.23) and v in (4.25) are related by w = v At, and hence
v has the dimension [rad/sec].

Lemma 4.3. The spectral density function satisfies the following.
(i) (Symmetry) Dpr(W) = Ppa(—w), —rT<w<T
(ii) (Nonnegativeness) b, (w) >0, —T<w<T

Proof. (i) The symmetry is immediate from A, (l) = A, (—1). (ii) This follows
from the nonnegativeness of A, (l) described in Lemma 4.1 (iii). For an alternate
proof, see Problem 4.5. O

Figure 4.1. Discrete-time LTI system

Consider a discrete-time LTI system depicted in Figure 4.1, where u is the input
and y is the output, and the impulse response of the system is given by {g(k), k =
0, 1, --- } with g(k) = 0, k < 0. The transfer function is then expressed as
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G(z)=> glk)z™* (4.27)

As mentioned in Theorem 3.1, G(z) is stable if and only if the impulse response
sequence {g(k), k =0, 1, - -- } is absolutely summable.

Lemma 4.4. Consider an LTI system shown in Figure 4.1 with G(z) stable. Suppose
that the input u is a zero mean second-order stationary process with the covariance
Sunction Ay, (1) satisfying

Z | Ayu(l)] < 00 (4.28)
l=—0o0

Then, the output y is also a zero mean second-order process with the spectral density
function of the form

Byy(2) = G(2)G (27 ) Puul(2) (4.29)
or ‘
Byy (W) = |G(e")[* Puu(w) (4.30)
Further, the variance of y is given by
7= o [ 16 P ) (431)

Proof. Since G(z) is stable, the output y(t) is expressed as

Zg u(t — 1)

Hence, it follows that u, = E{y(t)} = 0 and that the covariance function of y is
given by

Ayy (D) = E{y(t + Dy()}

=33 alg(k) Efult + 1 iju(t — k)}

=0 k=0
=53 g()gk) Al + K — ) (4.32)
=0 k=0

Since the right-hand side is a function of [, so is the left-hand side. Taking the sum
of absolute values of the above equation, it follows from (4.28) and the stability of
G(z) that

> > lg@1- gk - [ Auul + k= )]

oo =0 k=0

= (Z |g<z'>|) 3 i+ k=) < oc

Ms

> Ay ()] s

l=—
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where the sum with respect to [ should be taken first. From this equation, we see
that |A,,(0)| < oo, implying that y is a second-order process. Also, we can take the
Fourier transform of both sides of (4.32) to get

Pyy(2) = Z Ayy(l)2

l=—o00

= Zz <ZZg uul+k—z)>
l=—oc0 i=0 k=0

= Zg o Z g(k)zF Z 2D A (L + k=)
i=0 k=0 I=—o0

=G(2)G(z HPuu(2)

Equation (4.30) is trivial. Finally, putting [ = 0 in (4.24b) gives (4.31). O

Example 4.5. Consider a system G(z) = /1 — a2?/(z — a), where the input is a
Gaussian white noise e with mean zero and variance o2. We see that the output of
the system is described by the first-order autoregressive (AR) model

yt+1) = ay(t) + V1—a’e(t t=0,1, - (4.33)

The output process is called a first-order AR process. We observe that the future
y(t + 1) depends partly on the present y(¢) and partly on the random noise e(¢), so
that y is a Markov process. Since the spectral density function of e is @.. (w) = 0?2,
it follows from (4.32) and (4.30) that the covariance function and the spectral density

function of the output process y are respectively given by
Ay () =0%all,  1=0,+1,---

and

5 _ o*(1-a?)
w(w) = 1+ a? —2acosw’

The auto-covariance functions and spectral density functions for a = 0.4,0.8 and

0% = 1 are displayed in Figures 4.2 and 4.3. For larger a, the value of the covariance

function decreases slowly as |!| gets larger, and the power is concentrated in the low

frequency range. But, for smaller a, we see that the covariance function decreases

rapidly and the power is distributed over the wide frequency range. O

lw] <7

The next example is concerned with an autoregressive moving average (ARMA)
model.

Example 4.6. Let e be a zero mean white noise with variance 2. Suppose that the
system is described by a difference equation

t) + Z a;y(t—1i) =e(t) + Z cre(t—1) (4.34)
i=1 =1
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—%O -10 0 10 20
Lag!
Figure 4.2. Auto-covariance functions

10

Dyy(w)

Frequency w

Figure 4.3. Spectral density functions

This equation is called an ARMA model of order (p, q). From (4.34), we have

where A(z) and C'(z) are given by

1

A(z) =1+a127 +--+apz™?

Cz)=1+ciz P4tz
The process y generated by the ARMA model is called an ARMA process.
The condition that y is stationary is that all the zeros of A(z) are within the unit

circle (|z| < 1). Since the invertibility of the ARMA model requires that all the zeros
of C(z) are located within the unit circle, so that both

are stable!. Since both H(z) and 1/H (z) are stable, we can generate the noise pro-
cess e by feeding the output y to the inverse filter 1/H (z) as shown in Figure 4.4.
Thus 1/H (z) is called an whitening filter. Also, by feeding the white noise to the

'We say that a transfer function with this property is of minimal phase.



86 4 Stochastic Processes

filter H(z), we have the output y. Hence, the spectral density function of y is given
by
. . 2
1 —Jjw 4 ... —Jjwg
,,(w) = o2 + cie . + -t e .
1+ ae v 4+ -+ ape*]WP
We see that the output spectral has a certain distribution over the range (—m, 7)
corresponding to the filter used. Therefore, H(z) is often called a shaping filter.
It should be noted that the design of a shaping filter is closely related to the
spectral factorization and the stochastic realization problem to be discussed in later
chapters. O

(4.35)

Figure 4.4. Whitening filter and shaping filter

The rest of this section is devoted to the spectral analysis for an n-dimensional

vector stochastic process {z(t), t = 0, £1, --- }. For simplicity, we assume that =
has zero mean. Then the covariance matrix is given by
Ape(l) = E{z(t+Dz* (1)}, 1=0,1,--- (4.36)

Obviously, we have A,,(l) = AL (—I). Let the diagonal elements of A, () be
Ay (1), i =1, -+, n. Suppose that

Y Al <o,  i=1,--,n

l=—0c0

hold. Then, we can define the spectral density matrix by means of the Fourier trans-
form of the covariance matrix as

Bop(2) = Y Awall)z™ (4.37)
l=—00
or .
Bop(w) = Y e A(l), -—m<w<m (4.38)
l=—o0

where @,,(z) and @,,(w) are n X n matrices. In the matrix case, we have also
Wiener-Khinchine formula

_ 1 -1
Ape (D) = omj /Z:1 Don(2)z  dz (4.39a)

1 [" .
=, / elP . (w)dw, l=0,+1,--- (4.39b)
™

—T
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The (i, k)-elements of @, (z) and . (w) are respectively expressed as @, (z)
and ®;; (w), which are called the cross-spectral density function of x;(t) and xy (¢).
We see that @;;(w) are real functions with respect to the angular frequency w, but
&, (w), i # k are complex functions.

Lemma 4.5. The spectral density matrix .., (w) has the following properties.
(i) (Hermite) Bpr(w) = DL (—w), —T<w<m

(ii) (Nonnegativeness) b, (w) >0, —T<w<T

Proof. Noting that A, (l) = AL, (=), we get

Do (w) = i e*j“’l/lm(l) = i e*j“’l/l;fw(—l)

I=—oc0 l=—0c0
= > LD = 2L (~w)
l=—00
which proves (i). Now we prove (ii). Let the element of z(¢) be z;(t), i =1, --- , n,

and let £(t) = Y i, a;x;(t) with a; € C. Itis easy to see that £ is a second-order
stationary process with

Agg(l) = Z ait_lk/lik(l)
i,k=1

where A, (1) = E{z;(t + )z (t) }. Taking the Fourier transform of Ag¢ (1) yields

a;arPin (w) (4.40)
1

Pee(w) =

o~
Il

-

,L7

From Lemma 4.2, we have $¢¢(w) > 0, so that the right-hand side of (4.40) becomes
nonnegative for any ag, -+, a, € C. This indicates that &, (w) is nonnegative
definite. O

4.5 Hilbert Space and Prediction Theory

We consider a Hilbert space generated by a stationary stochastic process and a related
problem of prediction. Let {y(t),t = 0, £1, ---} be a zero mean second-order
stochastic process. Let the space generated by all finite linear combinations of y be
given by

k2
3= {5 =3 k)

k=k1

akER}, —OO<k1Sk2<OO

Define ¢, n € H as
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§=D aw(), n=Y by

i=11 J=i

where i1 < 45 and j; < jo. Then we define the inner product of £ and  as (€, n)g¢ =
E{&n}. Hence we have

(& n) (Z awy(i )) > biy(d)

i=11 J=J1

= Y E{y@y()}abj = Y Ayli— jab (4.41)

(i,7)€D (i,7)€D

where D = {(i, j) | i1 < i <i9; j1 < j < jo} is a finite set of indices.
Now suppose that the covariance matrix {/A,,(i — j)} is positive definite. Then

we can define
€115 = (&, &)ac Z Ayy (i = j)aia;
(i,5)€D

Then || -||3¢ becomes a norm in H [106]. Hence the space H becomes a Hilbert space
by completing it with respect to the norm || - ||4¢. The Hilbert space so obtained is
written as

H = span{y(t) | —o<t<oo}

where span denotes the closure of the vector space spanned by linear combinations
of its elements. The Hilbert space generated by y is a subspace of the Hilbert space
Ly(£2) of square integrable random variables.

Example 4.7. Let {e(t), t = 0, 1, --- } be a white noise with zero mean and unit
variance. The Hilbert space

H =span{e(t) |t=0,1, -}

generated by the white noise {e(¢)} is defined as follows. For a = (aj,as,---) €
12]0, 00), we define the set consisting of partial sums of e as

H = {fn = Zake(k) Z lar|? < oo, ay € R}
k=0

k=0
Taking the limit m > n — oo yields

m

||£m_€n||§fz Z |ak|2 -0

k=n+1

Thus {¢, } becomes a Cauchy sequence, so that there exists a quadratic mean limit

€= a Jim & =a- lim ) are(t
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Thus, by adjoining all possible quadratic mean limits, H{ becomes a Hilbert space.
Hence H may be written as

_ T 2
9‘(—{5_(]"151;01620(1166(]{?) Z|ak| < 00, akER}

k=0

The norm of ¢ € H is given by ||£][5; = Y peq |ar]|? < oo. In this sense, the Hilbert
space is also written as H = Lo ({2), where {2 is a set of stochastic parameters. [

For &, n € H,if (€, n)g¢ = 0 holds, then we say that £ and 7 are orthogonal, and
the orthogonality is written as £ L 7). Let W be a subspace of the Hilbert space H.
If (£, w)9c = 0 holds for any w € ‘W, then ¢ is orthogonal to W, which is written as
& L 'W, and the orthogonal complement is written as W-.

Lemma 4.6. Let W be a closed subspace of a Hilbert space H. For any element
& € H, there exists a unique wo € 'W such that

€ = wol|sc < |1€ — w]|sc, Yw eW (4.42)

Moreover, wq is a minimizing vector if and only if € — wg L W. The element wq
satisfying (4.42) is the orthogonal projection of £ onto the subspace W, so that we
write wg = E{& | W}.

Proof. See[111,183]. O

Let {y(t), t =0, £1, - -- } be a second-order stationary stochastic process with
mean zero. We consider the problem of predicting the future y(t+m), m =1, 2, - - -
in terms of a linear combination of the present and past y(t), y(t—1), - - - in the least-
squares sense. To this end, we define a Hilbert subspace generated by the present and

pasty(t), y(t —1), --- as

Y = {€(t) = iaky(t— k) i|ak| <00, ay € ]R}
k=0

k=0

By definition, A(z) = Y, arz~" is a stable filter. Thus Y, is a linear space gener-
ated by the outputs of stable LTI systems subjected to the inputs y(7), 7 < t, so that
it is a subspace of the Hilbert space H = span{y(t) | —oc < t < oo}. In fact, for
&, m €Yy, we have

=) ayt—k), n=>) by(t—k)
k=0 k=0

where Yo |ar] < 00, Y peq |br| < oo. It follows that

(o)

E+n =" (a+bey(t—k)

k=0
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Since |ax + by| < |ak| + |bx|, we see that 37~ |ax + bi| < co. Hence, it follows
that £ + 1 € Y, holds. Moreover, for any a € R, we have a{ € Y, implying that Y,
is a linear space.

Since, in general, y(t + m) € 3, m > 0 does not belong to Y,, the linear
prediction problem is reduced to a problem of finding the nearest element §(¢ + m)
in Y, to y(t + m). It therefore follows from Lemma 4.6 that the optimal predictor is
given by the orthogonal projection

gt +m) = E{y(t +m) | Y¢}
Define the variance of the prediction error by
o = E{lyt+m) =gt +m)]’},  m=1,2 -

Then, we see that the variance is independent of time ¢ due to the stationarity of
y. Also, since Y5 C Y;, s < t, the variance a;zn is a non-decreasing function with
respect to m, i.e.,
0<oi<o3<---

Definition 4.2. Consider the linear prediction problem for a second-order station-
ary stochastic process y with mean zero. If 3 > 0, we say that y is regular, or
non-deterministic. On the other hand, if J% = 0, then y is called singular, or deter-
ministic. O

If 62 > 0, we have 02, > Oforallm =1, 2, - - -. Also, if 2 = 0, then it follows
that .
gt +1) = E{y(t+1) [ Y} =yt +1) €Y
holds for any y(¢ + 1). Thus, Y441 = Y; holds for ¢, so that Y, is equal for all ¢.
Hence, we get
2 2

=---=0 =

— 42 —
O=0i=0 -

Therefore, the variances an of prediction errors are either positive, or zero. For the
latter case, y is completely predictable by means of its past values.
The following theorem is stated without proof.

Theorem 4.3. (Wold decomposition theorem) Let y be a second-order stationary
stochastic process with mean zero. Then, y is uniquely decomposed as

y(t) = u(t) + v(t) (4.43)

where u and v have the following properties.
(i) The processes u and v are mutually uncorrelated.
(ii) The process u has a moving average (MA) representation

(o)

u(t) =Y h(i)e(t — 1) (4.44)

=0
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where € is a white noise, and is uncorrelated with v. Further, {h(i)} satisfy

(o)

> @) <oo,  h(0)=1 (4.45)
i=0
(iii) Define Uy = span{u(t), u(t — 1), ---} and & = span{e(t), e(t — 1), --- }.
Then we have Uy = &, and the process u is regular.
(iv) Define V; = span{v(t), v(t — 1), - -+ }. Then Vy = Vs holds for all t, s, so that
the process v is called singular in the sense that it can be completely determined
by linear functions of its past values.

Proof. For proofs, see Anderson [13], Koopmans [95], and Doob [44] (pp. 159-164
and pp. 569-577). O

Example 4.8. (Singular process) From Theorem 4.3 (iv), it follows that V;;, = 'V,
for all ¢, 1. Hence v(t + 1) € Vy4y is also in V;. Thus E{v(t +1) | V,} = v(t + 1),
implying that if v(s), s < t are observed for some ¢, the future v(t + 1), v(t +2), - - -
are determined as linear functions of past observed values, like a sinusoid. Thus such
a process is called deterministic. O

Theorem 4.4. Let y be a zero mean, stationary process with the spectral density
Sunction ®,, (w). Then, y is regular if and only if

1 ™
=, / log &, (w)dw > —o0 (4.46)
T J_x

This is called the regularity condition due to Szegd [65]. Under the regularity condi-
tion, there exists a unique sequence {h(i), i = 0,1, -} such that (4.45) holds, and
and the transfer function

H(z) = Z h(i)z~',  h(0) =1 (4.47)

has no zeros in |z| > 1, and provides a spectral factorization of the form
Pyy(2) = 0*H(2)H(2 ") (4.48)

where the spectral factor H (z) is analytic outside the unit circle (|z| > 1), satisfying
(4.45) and 02 = e®°.
Proof. For a complete proof, see Doob [44] (pp. 159-164 and pp. 569-577). But,
we follow [134,178] to prove (4.47) and (4.48) under a stronger assumption that
log @, (%) is analytic in an annulus p < |2| < 1/pwith0 < p < 1.

Under this assumption, log $,, () has a Laurent expansion

log &,,(2) = Z az!, p<lz|<1/p (4.49)

l=—0c0
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By using the inversion formula [see (4.24)], we have

1 (" .
cz:%/ e og @, (w)dw, l=0,+1,--- (4.50)

—T

For [ = 0, we have the equality in (4.46). Since ¢; are the Fourier coefficients of an
even, real-valued function log @, (w), they satisfy c_; = ¢;,1 = 0,+£1,---. Thus,
for p < |2| < 1/p,

(o)

Dyy(2) = exp{ Z clz*l} = e exp{i clzl} exp{i clz*l}
=1 1=1

l=—

Now we define -
H(z) = exp{z clz_l} 4.51)
=1

Since the power series in the bracket {- - - } of (4.51) converges in |z| > p, we see
that H(z) is analytic in |z| > p, and H(co) = 1. Thus, H(z) of (4.51) has a Taylor

series expansion
(o)
=S h@)= >
i=0

with ~(0) = 1. This shows that (4.47) and (4.48) hold. This power series converges
in |2] > p, so that H(z) has no poles in |z| > 1. Also, it follows that |h(l)| < Mp}
for any [ > 0, where M > 0 and 0 < p; < p < 1. Hence,

YD) <o = D[R < oo
=0 =0

Moreover, from (4.51), we see that

[H(z)]” —eXp{ chz }

is analytic in |2| > p, and hence H (z) has no zeros in |z| > 1. This completes the
proof that H(z) is of minimal phase. O

Since @, (w) > 0, it follows that log @, (w) < Py, (w) holds. Thus we get

1 ks
co < o /_7T Dyy(w)dw < 00

This implies that ¢y is always bounded above. Thus, if ¢y is bounded below, the
process is regular; on the other hand, if cg = —oo0, we have 02 = 0, so that the
process becomes singular (or deterministic).

It should be noted that under the assumption that cg > —oo of (4.46), there is
a possibility that @,,(z) has zeros on the unit circle, and hence the assumption of
(4.46) is weaker than the analyticity of log @,,(z) in the neighborhood of the unit
circle |z| = 1, as shown in the following example.
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Example 4.9. Consider a simple MA process
y(t) = e(t) —e(t —1)
where ¢ is a zero mean white noise process with variance 2. Thus, we have
Hiz) =1-z""' = &,(:2)=2-(z+27"), &,,(w)=2-2cosw

It is easy to see that log ®,,(2)|.=1 = —o0, so that log $,,(z) is not analytic in the
neighborhood of |z| = 1. But, we can show that (see Problem 4.7)

/ log @y, (w)dw = / log(2 — 2 cosw)dw =0 > —cc (4.52)

—T —T

Thus, the condition of (4.46) is satisfied. But, in this case, it is impossible to have the
inverse representation such that

e(t) =Y aiy(t—i), Y ai<oo
7=0 1=0
In fact, the inverse 1/ H (z) shows that a; = 1,7 = 0,1, - -; but the sequence a =

(1,1,---) is not square summable. O

Example 4.10. Consider a regular stationary process y. It follows from Theorems
4.3 and 4.4 that y can be expressed as

v =Y Gt =), H()= Y h)e

where we assume that H (z) is of minimal phase. For . > 0, we consider the m-step
prediction problem of the stationary process y. Since Y; = &, the m-step predictor
is expressed as the following two different expressions:

Gt +m | t) = E{y(t+m) [ Yo} =D giy(t — 1) (4.53)
i=0
= B{y(t+m)| &} =" fie(t — i) (4.54)
1=0
In terms of coefficients {g;} and {f;}, define the transfer functions
G(z)=> g(i)z", F(z2)=Y_ fli)z""
1=0 1=0

We see that feeding y into the inverse filter 1/H (z) yields the innovation process
¢ as shown in Figure 4.5. Thus, by using the filter F'(z), the optimal filter G(z) is
expressed as
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Figure 4.5. Optimal prediction: the innovation approach

G(z) = ‘(Z)

Hence, it suffices to obtain the optimal filter F'(z) acting on the innovation process.
We derive the optimal transfer function F'(z). Define the prediction error

git+m)=yt+m)—gt+m]|t)

Then, by using (4.54), the prediction error is expressed as

gt +m) Zh e(t+m—1) Zf e(t —1)

m—1

- h()t+m—z+§: h(i +m) — f(i)]e(t — i)
=0 i=0

Since ¢ is a white noise, the variance of (¢ + m) is written as

m—1
E{i*(t+m)} =02 > h*(i +022 (i +m) — (i) (4.55)
=0 1=0

Hence, the coefficients of the filter minimizing the variance of estimation error are
given by
f@) = h(i +m), 1=0,1,--- (4.56)

This indicates that the optimal predictor has the form

gt+m|t)= th+z (t —1) th+m—z e(i)

1=—00

We compute the transfer function of the optimal predictor. It follows from (4.56)
that

F(z) = Z h(i4+m)z~" = h(m) + h(m + 1)z=" +---
i=0
Multiplying H (z) by 2™ yields

2™H(2) = h(0)2™ 4 -+ h(m — 1)z + h(m) + h(m + 1)z~*

We see that F'(z) is equal to the causal part of 2™ H(z); the causal part is obtained
by deleting the polynomial part. Let [ - ] be the operation to retrieve the causal part.
Then, we have F(z) = [z™ H(z)]+, so that the optimal transfer function is given by
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_F(z) _ ["H(2)]+
G =, 5= HG) 4.57)

Since y(t + m) = gt +m | t) + gt + m) with gt +m | t) L g(t +m),

2 _ 2 2
O =0y — 0}

where 07 = E{j*(t+m | t)}. Noting thaty = H(z)e and§ = F(2)e, the minimum
variance is expressed as

2 s
2 _ O¢ Joyi2 Gwy (2
7= gr [ (1@ P = 1FE@)R )

by using the formula (4.31). O

4.6 Stochastic Linear Systems

We consider a stochastic linear system described by the state space model

z(t+1) = A(t)z(t) + w(t) (4.58a)
y(t) = C(t)z(t) +v(t), t=0,1,--- (4.58b)

where ¢ € R” is the state vector, y € RP the observation vector, w € R" the
plant noise vector, and v € RP the observation noise vector. Also, A(t) € R"*",
C(t) € RP*™ are deterministic functions of time ¢. Moreover, w and v are zero
mean Gaussian white noise vectors with covariance matrices

s{[i e o) [0 o

where (t) € R™*™ is nonnegative definite, and R(t) € RP*? is positive definite
forallt =0, 1, - --. The initial state 2(0) is Gaussian with mean E{z(0)} = 1, (0)
and covariance matrix

E{[2(0) = 412 (0)][2(0) — 1= (0)]" } = I1(0)

and is uncorrelated with the noises w(t), v(t), t = 0, 1, - - . The system described
by (4.58) is schematically shown in Figure 4.6. This model is also called a Markov
model for the process y.

In order to study the statistical properties of the state vector z(t) of (4.58), we
define the state transition matrix
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o(t)
w x 1 xT +
O U e v

Figure 4.6. Stochastic linear state space system

At — 1At —2)--- A(s), t>s
b(t,s) = ( JA ) (=) (4.60)
I, t=s
For any k£ < s < t, it follows that
&t k) =D(t,s)P(s, k) (4.61)
In terms of the transition matrix, the solution of (4.58a) is written as
t—1
a(t) = B(t, s)x(s) + »_ B(t, k+ Dw(k) (4.62)
k=s
Then, we can easily prove the lemma that characterizes the process z(t).
Lemma 4.7. The process x of (4.58a) is a Gauss-Markov process.
Proof. Putting s = 0 in (4.62),
t—1
(t) = B(t,0)z(0) + Y _ (t, k+ Dw(k) (4.63)
k=0

This shows that z(t) is a linear combination of a Gaussian random vector z(0) and

the noises {w(0), - -+, w(t — 1)}, so that z(¢) is a Gaussian random vector. Thus z
is a Gaussian process. Suppose that s < ¢. Then, we see from (4.62) that z(t) is also
a linear combination of z(s), w(s), --- , w(¢t — 1), and that {w(s), --- , w(t — 1)}
are Gaussian white noises independent of z(s). Hence, we have

p(x(t) | 2(s), o(s = 1), ---, 2(0)) = p(z(t) | x(s)),  t>s
This implies that {z(¢), t =0, 1, - - - } is a Markov process. O

It should be noted that a Gaussian process can be characterized by the mean and
covariance matrix

pe(t) = E{z(t)},  Awa(t,s) = E{[2(t) — pa(D)][z(s) — pa(s)]"}
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Lemma 4.8. The mean vector and the covariance matrix of the state process x of
(4.58a) are respectively given by

pa(t) = P(t,0)pz(0) (4.64)
and

] i
Am(t,s):{ (t,)(s), t>s 465)

I(t)PL (s,1), t<s

where II(t) 1= Ayo(t,t) = cov{z(t) — p.(t)} is the state covariance matrix that
satisfies

II(t) = &(t,0)I1(0)" (£,0) + Z_: Btk +1)Q(k)D  (t,k + 1) (4.66)
k=0

Proof. Taking the expectation of both sides of (4.63) immediately yields (4.64). We
prove (4.65). Suppose that ¢ > s. Then it follows from (4.63) that

t—1

Aua(t,5) = B [2(1,0)[2(0) = ()] + Y B(t, 1+ ()]
=0
< [8(5,0[2(0) - (O] + 3 85,k + Du(h)] '}
k=0

Expanding the right-hand side of the above equation and using (4.59) yield

Apo(t,8) = (t,0)IT(0)" (5,0) + i B(t, k+1)Q(k)® (s, k + 1)
k=0

Putting s = ¢ gives (4.66). Since &(t,0) = &(t, s)P(s,0), we see from the above
equation that (4.65) holds for ¢ > s. Similarly, we can prove (4.65) for ¢t < s. O

It can be shown that the state covariance matrix I7(t) satisfies
Ot+1)=AWIH)AT () +Q(t), t=0,1,-- (4.67)

Thus, for a given initial condition I7(0) = cov{z(0)}, we can recursively compute
the covariance matrix II(¢t) fort = 1,2, ---.

Lemma 4.9. The process y defined by (4.58) is a Gaussian process, whose mean
vector jiy(t) and covariance matrix Ay, (t, s) are respectively given by

1y () = C(Op (1) = CHB(t, 0. (0) (4.68)

and
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C(t)d(t, s)I(s)CT (s) + C(1)B(t,s + 1)S(s), t>s

Ayy(t,8) = CI(H)CT(t) + R(t), t=s (4.69)
A7, (s, ), t<s

Proof. Equation (4.68) is obvious from (4.58b) and (4.64). To prove (4.69), we
assume that ¢t > s. It follows from (4.58b), (4.62) and (4.68) that

y(t) — py () = C(O)[x(t) = pa ()] + 0(2)

t—1

= C()P(t,5)[x(5) — pa ()] + C(1) D B(t, k + Dw(k) + v(?)

k=s

Thus we have

Ayy(t,5) = E{ly(t) — py (0)][y(s) — py(s)]"}
- E{ [ct)a(t,5)i(s) + (1) 2_: B(t, k + Dw(k) + v(t)
k=s

X [C(s)i:(s) + v(s)] T}

where Z(t) := z(t) — p.(t). From (4.59) and the fact that E{w(k)z*(s)} = 0
and E{v(k)Z1(s)} = 0, k > s, we have the first and second equations of (4.69).
Similarly, for t < s. O

4.7 Stochastic Linear Time-Invariant Systems

In this section, we consider a stochastic LTI system, where A(t), C(t), Q(¢), R(t),
S(t) in (4.58) and (4.59) are independent of time ¢.
Consider a stochastic LTI system described by

z(t+1) = Az(t) + w(t) (4.70a)
y(t) = Cx(t) + v(t), t=ty,to+1, - (4.70b)

where tq is the initial time, and x(¢o) is a Gaussian random vector with mean g, (to)
and the covariance matrix I (tg).

We see from (4.60) that the state transition matrix becomes ®(t,s) = A%, ¢t >
s. It thus follows from (4.64) and (4.66) that the mean vector is given by

pa(t) = AP0 p, (to) 4.71)

and the state covariance matrix becomes
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t—1

H(t) — Atftgﬂ(to)(AT)tftg + Z Atfkle(AT)tfkfl

k=tg
t—to—1
= ATt I () (AT) T+ ) ARQ(AT) (4.72)
k=0
Also, from (4.72) and (4.67), I1(t) satisfies
Oit+1)=AO0MAY +Q, t=to,to+1, - (4.73)

Lemma 4.10. Suppose that A in (4.70a) is stable, i.e., p(A) < 1. Letting ty —
—oQ, the process x becomes a stationary Gauss-Markov process with mean zero and

covariance matrix
Alrr 1>0
Ape(l) = ; - 4.74
® {H(AT)_I, <0 ( )
where 11 is a unique solution of the Lyapunov equation
II = AITAT + Q (4.75)
Proof. Since A is stable, we get . Em At=to = (. Thus, from (4.71),
0—>—00
toE)Izloo fa (t) =0
Also taking tg — —oo in (4.72),
lim T7(t) =) A*Q(AT)* =11
k=0

tg——oo

It can be shown that IT satisfies (4.75), whose uniqueness is proved in Theorem 3.3.
Since the right-hand side of (4.74) is a function of the time difference, the process x
is stationary. The Gauss-Markov property of z follows from Lemma 4.7. O

Lemma 4.11. Suppose that A is stable. For to — —oo, the process y of (4.70b)
becomes a stationary Gaussian process with mean zero and covariance matrix
cA-1CT 1>0
Ayy(l) =< CIICT + R, l=0 (4.76)
C(AT)~t=1oT) 1<0
where C'" is defined by -
CT=AIct +s 4.77)

Proof. As in Lemma 4.10, it can easily be shown that since A is stable, for t; —
—o0, y of (4.70b) becomes a stationary Gaussian process with mean zero. From
Lemmas 4.9 and 4.10, the covariance matrix of y becomes
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CA'IICT + CAFLS, 1>0
Ayy(l) = CIIC™ + R, 1=0
CIT(AT)=ICT + ST(AT)=1-1CT, 1 <0
This reduces to (4.76) by using C of (4.77). O

Example 4.11. For the Markov model (4.70), the matrices A, C, C are expressed as
A= Bla(t+)a" ()} 1
C = E{y(t)a" (1)} 1~"
C = Bly®aT(t+1)}

In fact, post-multiplying (4.70a) by 2™ (¢), and noting that E{w(t)z* ()} = 0, we

have
E{z(t +1)z"(t)} = AE{z(t)zT (t)} = Al

showing that the first relation holds. The second relation is proved similarly by using
(4.70b). Finally, from (4.70),

E{y()z" (t+ 1)} = E{[Ca(t) + v(®)][z" (AT +w" (1))}
=cnAt +st=cC
This completes the proof. O

Example 4.12. We compute the spectral density matrix @, gz) of y with covariance
matrix (4.76). We assume for simplicity that S = 0, so that CT = AIICT. Thus, we

have
CAM(Z)CT, l#0
C’AN(O)CT + R, =0

yy( -

so that the spectral density matrix is given by
B, (2) = CPor(2)CT + R (4.78)

where &, (z) is the spectral density matrix of z. It follows from (4.37) and (4.74)
that

[e%e} —1 [e%e}
Boo(2) = Y Apa(l)z'= Y IAY) 27+ +) ATz

l=— l=—0c0 =1

=1+1 <Z zk(AT)l> + (Z z_lAl> I (4.79)
=1 =1

Let p := p(A). Since A is stable, we have 0 < p < 1, so that
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o
oAl = (eI - A)TTA, 2] >
=1

and

D AT = AT T -AT)T, 2 <!
=1

This shows that the right-hand side of (4.79) is absolutely convergent for p < |z| <
p~ L. Thus, by using the Lyapunov equation (4.75),

Boo(2) =M+ AT (27T — AT)™V 4 (21 — A)7P AN
= (21 — A) YT — AITAY) (2711 — AT !
= (2 = A)7'Q(z71 — AT
Also, let W(z) = C(z1 — A)~!'. Then &,,(2) is expressed as
Dyy(2) =R+ W(R)QW"'(z™ 1) (4.80)

This is an extended version of (4.29) to a multivariable LTI system. If S # 0, (4.80)
becomes

B,y (2) = R+W(2)S+STW (™) + W) QW' (™) (4.81)

For a proof of (4.81), see Problem 4.12. O

4.8 Backward Markov Models

In the previous section, we have shown that the stochastic LTI system defined by
(4.70) generates a stationary process ¥, so that the system of (4.70) is often called
a Markov model for the stationary process y. In this section, we introduce a dual
Markov model for the stationary process y; the dual model is also called a backward
Markov model corresponding to the forward Markov model.

For the Markov model of (4.70), we assume that the state covariance matrix
II = E{z(t)zT (t)} of (4.75) is positive definite. Then, we define

wy(t) == I a(t) — AT a(t + 1) (4.82)
It follows from (4.74) that
E{lwy)z'(t + 1)} = I *E{z(t)z" (t + 1)} - AT T E{z(t + Da" (t + 1)}
= 7' AL (1) — AT AL (- 1)
=0 'nAYY —A'DmAnhY =0, 1=1,2,---

Hence, w;(t) defined above is orthogonal to the future z(t +1),l = 1,2, ---, so
that it is a backward white noise. In fact, by definition, since
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wp(t +1) € span{a(t+1),z(t+1+1)}
we see that wy (t) is orthogonal to wy (¢ + 7). This implies that
E{wy(t + Dwi ()} =0, 1#0

Motivated by the above observation, we prove a lemma that gives a backward
Markov model.

Lemma 4.12. Define x(t) = [Ix(t + 1) with I[I = 1. Then, the model with ;
as the state vector

xp(t — 1) = ATz (t) + wy(2) (4.83a)
y(t) = Cap(t) + vp(t) (4.83b)

is a backward Markov model for the stationary process y, where C € RP*™ is called
the backward output matrix, and wy, and vy are zero mean white noises with covari-
ance matrices

p{ [0 Wi wen = | &) @84
Moreover, we have cov{z;(t)} = IT and
Q=I-A"A, S=0"-A"11C", R=A4,,(00-CIICT (4.85)

Proof. Equation (4.83a) is immediate from (4.82). We show that the following
relations hold.

E{wy(t)x
E{vp(t)x

(t+1-1)}=0, Bluyt)y*t+1)}=0, 1=1,2 --- (4.86)
t+1-1)}y=0, B{ot)y " t+0)}=0, 1=1,2 --- (4.87)

g o

(i) The first relation of (4.86) follows from the fact that wy(t) L z(t +1), 1 =
1,2, -+ and x(t + 1) = ITxp(t + 1 — 1). We show the second relation in (4.86).
From (4.82),

E{wy(t)y* (t +1)} = I E{z(t)[Cx(t + 1) + v(t + )]}

— AT E{z(t + 1)[Cz(t + 1)+ v(t + )]}

=07 'E{z@t)z" (t +1)}CT + T E{z(t)v™ (t +1)}
- ATO'E{z(t + )zt ¢ +1)}C*
— AT E{zt+ 1ot (t + 1)}

Sincev(t +1) L {z(t+1), z(t)}, L =1, 2, - - -, the second and the fourth terms in
the above equation vanish. Thus, it follows from (4.74) thatfor{ =1, 2, - - -,
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E{wy(t)yT(t +1)} = 1 I(AT)'CT — ATm='im (AT =107 =0
as was to be proved.
(ii) From (4.83b)and zp(t — 1) = 11 'a(t),
BEf{vy(t)ay (t +1-1)} = B{[y(t) - Cay(t)]2" (¢t + D)}
— Bly@®)a" (¢ + )}
—CO'"E{a(t+ V2Tt + 1)} T~ (4.88)
The first term in the right-hand side of the above equation is reduced to
E{y®)z" (t+ )M " = E{y(t)[Az(t +1 - 1) +w(t+1 - 1)} 1!
=E{y®)z"(t+1-1)}ATm~!
+ E{yw" (t+1 - 1)} I !
=E{y®)z (¢t +1-1)}A T

where we have used the fact that E{y(t)w! (t+1—1)} = 0,1 = 2, 3, - - - . Repeating
this procedure gives

E{y®)zT(t + )T = E{y(t)zT(t +1 - 2)}(AT)*m*
= E{y(t)z" (¢t + (AT !
=CAT -t (4.89)
Also, from (4.74), the second term of the right-hand side of (4.88) becomes
CHO'E{z(t+ V2t t+ 1)y I =Cco A" o
= O(AT) !

Thus, it follows that the right-hand side of (4.88) vanishes, implying that the first
equation in (4.87) is proved. Similarly, we can prove the second equation. In fact, we
see from (4.83b) and (4.70b) that

E{uw(t)y" (t +1)} = E{[y(t) — Cas()]y" (t + 1)}
= E{y(t)y" (t +1)}
— CO'E{z(t+ D)[Cx(t+1) +v(t+ 1]}
=FE{yt)y ' (t+1)} - CH *E{z(t + z' (t +1)}C*

By using (4.74) and (4.76), we see that the right-hand side of the above equation
vanishes for!/ =1,2,---.

Having proved (4.86) and (4.87), we can easily show that wy, v, are white noises.
By using (4.87),
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E{vy(t)vf (t +1)} = E{vs®)[y(t +1) = Cxp(t + )"} =0, 1=1,2, -

so that v (t) is a white noise. Similarly, we see from (4.86) and (4.87) that for I =
1,2, -,

E{vy(t)ywi (t +1)} = E{vp(t)[zp(t +1—1) — AYzy (. +D]T} =0
E{wy(t)vy (t+1)} = E{ws(0)[y(t +1) — Cap(t +1)]"} = 0

Hence, wy(t + 1) L vp(t) holds for I # 0. Thus we have shown that (ws(t), vs (¢ ))
are jointly white noises. Finally, it can easily be shown that cov{xz;(t)} = II an
(4.85) hold. D

The backward Markov models introduced above, together with forward Markov
models, play important roles in the analysis and modeling of stationary stochastic
processes. Especially, the backward Markov model is utilized for proving the positive
real lemma in Chapter 7, and it is also instrumental for deriving a balanced (reduced)
stochastic realization for a stationary stochastic process in Chapter 8.

4.9 Notes and References

o A large number of books and papers are available for stochastic processes and
systems. Sections 4.1 and 4.2, dealing with an introduction to stochastic pro-
cesses, are based on [13,44, 68, 134, 142], where the last one contains many
practical examples.

e Section 4.3 has discussed ergodic properties of stochastic processes based on
[123]. Also, for spectral analysis of stationary stochastic processes in Section
4.4, see [123,134,150].

e In Section 4.5, we have introduced Hilbert spaces generated by stochastic pro-
cesses, and then stated the Wold decomposition theorem; see [44,95]. This the-
orem is needed in developing a stochastic realization theory in the presence of
exogenous inputs in Chapter 9. The regularity condition of stationary processes
due to Szego [65] is proved under a certain restricted condition [134, 178], and
the linear prediction theory is briefly discussed. Some advanced results on pre-
diction theory are found in [115,179,180]. Other related references in this section
are books [13,33, 138].

e Sections 4.6 and 4.7 have dealt with the stochastic linear dynamical systems,
or the Markov models, based on [11, 68, 144]. Moreover, Section 4.8 derives
dual or backward Markov models for stationary stochastic processes based on
[39,42,106].



4.10 Problems 105
4.10 Problems

4.1 Prove the following identity for double sums.

N N N-1
DD bli—i) =Y, (N—[k)s(k)
=1 j=1 k=—N+1
4.2 Prove (4.13).
4.3 Prove the formulas for Césaro sums.
. ol
(a) nlgr;o ap, =0 = nlgr;o n Z; a; =0

e RN A
(©) h_)II;OkZak—S = nh_}n;()Z(l—n)ak—S

4.4 Prove Theorem 4.2.

4.5 Prove Lemma 4.3 (ii) by means of the relation $(w) = A}im In(w), where
—o0
Iy (w) is given by
1 7 :
In(w) = EQ| Y e >
N = 0N e “b) (20

4.6 For the linear system shown in Figure 4.1, show that the following relation
Pyu(w) = G(ejw )Puu(w)
holds, where the cross-spectral density function ®,,,(w) is the Fourier transform

of Ay, (1). (Hint: See Lemma 4.4.)

4.7 Prove (4.52).
4.8 Suppose that the spectral density function of an ARMA process y is given by

1.25 + cosw

)] =
v(@) 1.81 — 1.8 cosw

Obtain the difference equation satisfied by y.

4.9 By using the result of Example 4.10, solve the m-step prediction problem for
the ARMA process

y(t) +ay(t —1) =e(t) + ce(t — 1), la] <1, le] <1

where m > 0 and a # c.
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4.10 Show that y in (4.58) is not a Markov process, but the joint process (x, y) is a
Markov process.

4.11 Let II(t),t = 1, 2, - - - be the solution of the Lyapunov equation (4.73) with
the initial condition I7(0) = 0. Let My := A, Ng := Q.Fork=1,2, ---, we
iterate

Ngi= My 1Ny 1 ML + Ny
My == M2,

Show that IT(2¥) = Ny, k = 1, 2, - -+ holds. This scheme is called a doubling
algorithm for solving a stationary Lyapunov equation.

4.12 Prove (4.81).
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Kalman Filter

This chapter is concerned with the discrete-time Kalman filter for stochastic dynamic
systems. First, we review a multi-dimensional Gaussian probability density function,
and the least-squares (or minimum variance) estimation problem. We then derive
the Kalman filter algorithm for discrete-time stochastic linear systems by using the
orthogonal projection. The filter algorithm is extended so that it can be applied to
stochastic systems with exogenous inputs. Moreover, we derive stationary forward
and backward Kalman filter algorithms, which are useful for the study of stochastic
realization problem.

5.1 Multivariate Gaussian Distribution

We consider a multivariate Gaussian distribution and the minimum variance estima-
tion problem. Let z € R™ and y € RP be jointly Gaussian random vectors. Let the
mean vectors be given by u, = E{z} and u, = E{y} and the covariance matrices
by
5o {Em Ewy] _ cov{z,z} cov{z,y}
Yya Xyy cov{y,z} cov{y,y}

where we assume that the covariance matrix X € R("*P)*(n+P) is positive definite.
For convenience, we define a quadratic form

Qery) = [z = 1)™ (g — 1)) 5" [y :Zﬂ 5.1)

Then the joint probability density function of (z, y) can be written as

lQ(x,y)}, (5.2)

1
p(z, y) = o eXp{—2

where C' = (27)("*+P)/2| 5|'/2 is the normalization factor.



108 5 Kalman Filter

Lemma 5.1. Let the probability density function p(x,y) be given by (5.2). Then, the
conditional distribution of x given y is also Gaussian with mean

E{.CIJ | y} = fg + Ewa;yl (y - :u'y) (53)
and covariance matrix
B{le - B{e |l - B{w | y})") = Dua - 50, Zy0 50 (54)

Moreover, the vector x — E{x | y} is independent of y, i.e., the orthogonality condi-
tionz — E{z |y} L y holds.

Proof. First we compute the joint probability density function p(z, y). Define

2—1 _ |:E:wv Ea:y:| - . |:V.’wc Va:y:|

Also, define T := X, — EzyEy_yl Yy2. Then, it follows from Problem 2.3 (c) that

Vie =171, Vay=-0""5,, 5.1 Vyu=-32,7""
Vg = Z, + X, By Y1 5, 2]
Thus Q(x, y) defined by (5.1) becomes
Qx, y) = (x — o) Vau (@ — o) + (& — 1) Vary (y — 1)

+ (y - /‘y)TVyz('x - ﬂw) + (y - Ny)TVyy(y - Ny)

= [ — o + Ve Vay (v — )" T 2 = o + Vi Vi ( — 1)
+ (y - Ny)T[Vyy - Vywvz;lva](y - Ny)

=@-a)"T (@ —a)+ (y— )" 2, (y — ny)

where a := g, + EzyE;yl (y — py)- Therefore, the joint probability density function
p(z, y) is given by

1 1
p(z; y) = o, exp {—2(:1: —a)"r Yz - a)}
1 1
X on &P {— N ) Ty (y — uy)} (5.5)

where C' = (27)"/?|Y|*/? and C" = (27)?/?|%,,|'/?. Thus integrating p(z, y)
with respect to x yields the marginal probability density function
1 1 T y—1
P) =y exp = o (0 — 1) Ty (y — py) (5.6)

It also follows from (5.5) and (5.6) that the conditional probability density function
is given by
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Walo) = Gyew -y a-a T - )]

From this, (5.3) and (5.4) hold. Also, we see from (5.5) thatz —a =z — E{z | y}
and y are independent. O

In the above proof, it is assumed that X' is nonsingular. For the case where X' is
singular, the results still hold if we replace the inverse X ~! by the pseudo-inverse
X1 introduced in Lemma 2.10.

Lemma 5.2. Suppose that (x, y) are jointly Gaussian random vectors. Then, the
minimum variance estimate of x based on y is given by the conditional mean

= Bz |y} = pe + Zay 5,y — 1) (5.7)

Proof. It may be noted that the minimum variance estimate % is a y-measurable
function f(y) that minimizes E{||z — f(y)||?}. It can be shown that

E{llz = f@)I"} = E{llz — a+ a = f(»)II"}
= B{llz — al*} + 2E{[z — o] "[a — f(»)]}
+E{lle = f)II”}

Since @ — f(y) is y-measurable and since E{z | y} = a, the second term in the
right-hand side becomes

E{lz — o] *[a = )]} = E{E{[z — o] [0 — f()] | y}}
= E{E{lz —a]" |y}a—F@)]} =0

Thus we have

E{llz = fII"} = E{llz — ol"} + E{lle = FW)II*} > E{llz — of*}

where the equality holds if and only if f(y) = «. Hence, the minimum variance
estimate is given by the conditional mean a = E{z | y}. O

Suppose that x, y are jointly Gaussian random vectors. Then, from Lemma 5.2,
the conditional expectation E{z | y} is a linear function in y, so that for Gaussian
case, the minimum variance estimate is obtained by the orthogonal projection of z
onto the linear space generated by y (see Section 5.2).

Example 5.1. Consider a linear regression model given by
y=Hzx+wv

where & € R" is the input Gaussian random vector with N(u,, P), y € RP the
output vector, v € RP a Gaussian white noise vector with N(0, R), and H € RP*"
a constant matrix. We compute the minimum variance estimate of x based on the
observation y, together with the error covariance matrix. From the regression model,
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py = E{Hz +v} = Hpy,
Sy = B{(z — po)(y — py) '} = PH*
Sy =E{(y = my)(y — py)"} =HPH" + R

Therefore, from Lemma 5.2, the minimum variance estimate is given by
i=p.+PH[HPHT + R|™"(y — Hu.,)
Also, from (5.4), the error covariance matrix P := E{[z — ][z — #]T} is
P=P—PH'[HPH" + R 'HP (5.8)

where HPH™ + R is assumed to be nonsingular. O
Lemma 5.3. For P € R*"*", H € RP*™, R € RP*P, we have

PHY[R+HPH"| ' =[P"* + H'R'H|'H'R™! (5.9)
where it is assumed that P and R are nonsingular.
Proof. The following identity is immediate:

[P~'+ H'R'H|PH" = H'R™'[R+ HPH"]

Pre-multiplying the above equation by [P~! + HT R~'H]~! and post-multiplying
by [R+ HPH?T]! yield (5.9). O

It follows from (5.9) that the right-hand side of (5.8) becomes
P-PH'HPH' + R|'HP =[P '+ H'R'H]! (5.10)
Equations (5.9) and (5.10) are usually called the matrix inversion lemmas.

Lemma 5.4. Let (z,y, z) be jointly Gaussian random vectors. If y and z are mutu-
ally uncorrelated, we have

E{x |y, 2} = B{x [y} + E{z | 2} — pta (5.1
Proof. Define w™ := (y*, 2z7) and ), := (p , ). Then we have E{x | w} =
E{z |y, z}. Since y and z are uncorrelated,

S A N
Thus, from Lemma 5.1,
E{r | w0} = e + Zow S (w — 1)
= o+ Zay Xy} (Y — py) + o X7 (2 — p2)

Since E{x | y} = to + Zay Tyt (y — 1y) and Bz | 2} = pro + Zon B2 (2 — ),
we see that (5.11) holds. O
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We consider the minimum variance estimation problem by using the orthogonal
projection in a Hilbert space of random vectors with finite variances. Let x € R™ be
a random vector with the finite second-order moment

E{ll«l*} =Y E{7} < o0

=1
Let a set of random vectors with finite second-order moments be

50 = {a| B{llzl*} < o}

Then, it is easy to show that H is a linear space.
For z, y € J{, we define the inner product by

(z,y)3c = B{zTy} = traceE{zy"}

and the norm by
[/l = v/(z,2)3c = /E{|l«|*}

By completing H by means of this norm, we have a Hilbert space of n-dimensional
random vectors with finite variances, which is again written as H = Ly ({2).

Letz, y € 3. If (x,y)5 = 0 holds, then we say that = and y are orthogonal,
and write z L y. Suppose that Y is a subspace of H. If (z,y)sc = 0 holds for any
y € Y, then we say that x is orthogonal to Y, and write z 1 Y. Let z € H. Then,
from Lemma 4.6, there exists a unique yo € Y such that

llz = yollsc < llz —yllae,  Vy €Y
Thus yo is a minimizing vector, and the optimality condition is that z — yo L Y.
Suppose that y1, - - - , yn be p-dimensional random vectors with finite second-
order moments. Let Y be the subspace generated by y1, --- , yn, i.e.,

N
Y= {(I—FZAiyi

i=1

a€R™, A; € R”Xp} (5.12)

Any element £ € Y is an n-dimensional random vector with finite second-order
moment. By completing the linear space Y by the norm || - ||4¢ defined above, we
see that Y becomes a Hilbert subspace of I, i.e., Y C H.

Lemma 5.5. Let & be an element in H, and Y be the subspace defined by (5.12).
Then, X is orthogonal to Y if and only if the following conditions hold.

E{#} =0, E{iyl} =0, i=1,---,N (5.13)

Proof. Since any element & € Y is expressed as in (5.12), we see that if (5.13)
holds,
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N N
(&, ®)ac = (z a+ ZAiyz) = B{i"}a+ ) traceB{zy[ }AT =0
=1 =1

Conversely, suppose that # L Y holds, ie., (Z,Z)9 = O for any & € Y. Putting
# = a, we have (#,a)5c = trace(E{#}a’) = 0. Taking a = E{%} yields
|IE{Z}||* = 0, implying that E{#} = 0. Next, let # = A;y;. It follows that
(%, Asyi)sc = trace (E{i;le}A?) = 0. Similarly, taking A; = E{zyl} € R™*P
yields

trace (E{ay! }E{ayl}T) = IE{ayT Y} =0 = B{@yl}=0
This completes the proof of lemma. O

Example 5.2. Consider the random vectors x, y with probability density function of
(5.2). Let the data space be givenby Y = {b+ Ay | b € R*, A € R"*P}. Then, the
orthogonal projection of x onto the space Y is given by

Bz | Y} = po + Zay 55, (y — 1y)
In fact, let £ =  — (b + Ay). Then, from the conditions of Lemma 5.5, we have
0=E{i}=F{z— (b+ Ay)} = po — b— Ap,
0=EB{iy"} = B{lz - (b+ Ay)ly"}

From the first condition, we have b = u, — Ap,,. Substituting this condition into the
second relation gives E{[z — . — A(y — py)]y*} = 0, so that

E{[z — o — Ay — y)]ly — py]"} =0

Thus we obtain
and hence
&= pre + Ay — py) = po + Zay Ty (y — )

Thus we have shown that the orthogonal projection is equivalent to the conditional

expectation (5.3), and hence to the minimum variance estimate (5.7). O
Suppose that y1, - - - , y v be p-dimensional random vectors, and that there exist

a set of p-dimensional independent random vectors ¢, - -+ , g such that
of{gi,i=1,--- Jk}=0{y;, i =1,--+  k}, k<N (5.14)
where o{y;, i = 1, ---, k} is the o-algebra generated by {y;,i = 1, ---, k},
which is roughly the information contained in {y;, i = 1, - -- , k}. In this case, the

random vectors ¢1, - - , yn are called the innovations of y1, -+ - , yn.
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Example 5.3. We derive the innovations for p-dimensional Gaussian random vectors

Y1, -+, yN-LetFr =o{y;, i =1, --- , k}, and define §1, - -+ , gn as
9 =y1 — E{y1 | Fo} = y1 — E{y1}
Jo = y2 — E{y2 | J1} (5.15)

v =y~ — E{yn | Tn_1}

Since, for Gaussian random vectors, the conditional expectation coincides with the
orthogonal projection onto the data space, we have

k—1
E{ye | Fr—1} = E{ye [ y1, -, y—1} = ax + ZAkiyi; Ap; € RPZP
i=1
We see from (5.15) that
(7 I, 01| ai
Y2 —An I Y2 az
L= . . Sl (5.16)
Y —Ap1 s —Ape—1 Ip | Yk ar
This shows that ¢, is a Gaussian random vector, since it is a linear combination of
ai, -+, ar and yy, -+, yg. Since the pk x pk lower triangular matrix in (5.16) is
nonsingular, we see that gy, is also expressed as a linear combination of 41, - - - , U,
ai, ---, a. Hence (5.14) holds.
We show that g1, --- , g are independent. From Lemma 5.1, g and Fj_q are

independent, so that we get E{Jx | Fr—1} = 0 and E{gr} = 0. Since for k > [, §j;
is ¥ _1-measurable,

E{gri'} = E{E{Gi0" | Fr-1}} = E{E{Gr | Fr-1}9} =0

It can be shown that the above relation also holds for £ < [, so that E{gkg,T} =
0, k # [. Since the uncorrelated two Gaussian random vectors are independent, .
are J; (k # 1) are independent. Hence, we see that ¢, - - - , § are the innovations
for the Gaussian random vectors y;, - - - , Yn. O

5.2 Optimal Estimation by Orthogonal Projection

We consider a state estimation problem for discrete-time stochastic linear dynamic
systems. This is the celebrated Kalman filtering problem.
We deal with a discrete-time stochastic linear system described by

2(t+1) = A a(t) +w(t) (5.17a)
y(t) = C)z(t) +v(t), t=0,1,-- (5.17b)
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where ¢ € R” is the state vector, y € RP the observation vector, w € R" the
plant noise vector, and v € RP the observation noise vector. Also, A(t) € R™*™,
C(t) € RP*™ are deterministic functions of time ¢. Moreover, w and v are zero
mean Gaussian white noise vectors with covariance matrices

R M ETE T P

where () € R**™ is nonnegative definite, and R(t) € RP*P is positive definite
forallt =0, 1, ---. The initial state z(0) is Gaussian with mean E{z(0)} = 1, (0)
and covariance matrix

E{[2(0) ~ pa (0)])[2(0) = p2(0)]7} = 11(0)

and is uncorrelated with the noises w(t), v(t), t = 0, 1, - - -. A block diagram of the
Markov model is depicted in Figure 5.1.

v(t)
w T 1 T +
t) +’Q (t+ )> - (t) Cow RO y(t)>

Figure 5.1. Stochastic linear dynamic system

Let 3, = o {y(0), y(1), -- -, y(t)} be the o-algebra generated by the observa-
tions up to the present time ¢. We see that 3 is the information carried by the output
observations, satisfying 3 C J;, s < . Thus JF; is called an increasing family of
o-algebras, or a filtration. We now formulate the state estimation problem.

State Estimation Problem

The problem is to find the minimum variance estimate Z(t+m | ¢) of the state vector
z(t + m) based on the observations up to time ¢. This is equivalent to designing a
filter that produces Z(¢ + m | t) minimizing the performance index

J = E{||lz(t + m) — 2(t + m | t)||*} (5.19)

where Z(t+m | t) is F;-measurable. The estimation problem is called the prediction,
filtering or smoothing accordingas m > 0, m = 0 orm < 0. O

We see from Lemma 5.2 that the optimal estimate & (¢ + m | t) that minimizes
the performance index of (5.19) is expressed in terms of the conditional expectation
of z(t +m) given F; as
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F(t+m|t) = E{z(t +m) | Fi}

Let the estimation error be defined by Z(t +m | t) := z(t + m) — &(t + m | t) and
the error covariance matrix be

Pt+m|t):= E{[z(t+m)—&{t+m| )]zt +m)—2(t+m|t)"}

From Lemmas 4.7, 4.8 and 4.9, we see that (z,y) of (5.17) are jointly Gaussian
processes. For Gaussian processes, the conditional expectation Z(t + m | t) is a
linear function of observations y(0), y(1), - - , y(t), so that the optimal estimate
coincides with the linear minimum variance estimate of x(¢+m) given observations
up to time ¢. More precisely, we define a linear space generated by the observations

as .
Yy = {c+ > Aiy(i)
=0

The space Y, is called the data space at time ¢. Then, from Lemma 5.5, we have the
following results.

ceR", A€ ]R"Xp} (5.20)

Lemma 5.6. The minimum variance estimate Z:(t-+m | t) is given by the orthogonal
projection of x(t + m) onto Y, i.e.,

E(t+m|t)=E{z{t+m)]| Y} (5.21)

The optimality of Z(t +m | t) is that the estimation error &(t +m | t) is orthogonal
to the data space (see Figure 5.2):

Et+m|t)=xz@t+m)—2T@E+m|t) LY, (5.22)

Moreover, the minimum variance estimate is unbiased.

Proof. Equations (5.21) and (5.22) are obvious from Lemma 5.5. Since the data
space Y, contains constant vectors, it also follows that E{Z(t + m)} = 0,¢ =

0,1, --. Thus the minimum variance estimate is unbiased. O
t
2t+m) S |
0 &t +mlt)
Ye

Figure 5.2. Orthogonal projection onto data space Y
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5.3 Prediction and Filtering Algorithms

Now we define
e(t) = y(t) - E{y(t) | :}dtfl}a t= ]-7 2: o (523)

where e(0) = y(0) — E{y(0) | F_1} = y(0) — 1y (0). Then, as in Example 5.3, it
can be shown that e is the innovation process for y.

Lemma 5.7. The innovation process e € RP is a Gaussian process with mean zero
and covariance matrix

E{e(t)e ()} = [C()P(t | £ — 1)CT(2) + R($)s (5.24)
where P(t | t — 1) is the error covariance matrix defined by
P(t]t=1)=B{z(t) - &(t | t - D][x(t) — 2(t | t - ]"}

Proof. Since y is Gaussian, the conditional expectation E{y(t) | F;_1} is Gaussian,
and hence e is Gaussian. By the definition (5.23), we see that

Efe(t) | F11} =0,  E{e(t)} =0

Since e(s) is a function of y(0), y(1), --- , y(s), it is F;_;-measurable if t > s.
Therefore, by the property of conditional expectation,

Efe(t)e’ (s)} = E{E{e(t)e’ (s) | F1-1}}
= E{E{e(t) | Fe-1}e(5)} = 0

Similarly, we can prove that the above equality holds for ¢ < s. Thus e(t) and e(s),
t # s are uncorrelated.
We show that (5.24) holds for ¢ = s. It follows from (5.17b) that

e(t) =y(t) — E{C(t)z(t) + v(t) [ Y1}
=y@t)—C@H)zt|t—-1)=C@®)z|t—1)+v(t)
so that
E{e()e™ (1)} = B{C®)(t | t - 1) + v(®][COF(E | t — 1)+ v(®)]}
=CH)E{z(t|t— 1)z (t|t—1)}C" ()

+ O E{z(t |t — 1ot (t)}

+ E{o@®)z"(t |t —1)}CT(t) + E{v(t)v* (1)} (5.25)
Since v(t) is uncorrelated with z(t) and Z(¢ | ¢t — 1), we have

Bt | t— 10T} = B{la(t) - &t | t - D" ()} =0

Thus we see that the second and third terms of the right-hand side of (5.25) vanish;
thus (5.24) holds from the definitions of R(t) and P(¢ | t — 1). O
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In the following, we derive a recursive algorithm that produces the one-step pre-
dicted estimates (¢t + 1 | ¢) and Z(¢ | t — 1) by using the orthogonal projection. We
employ (5.21) as the definition of the optimal estimate.

From the definition of e(¢) and Y,, the innovation process is also expressed as

e(t) = y(t) — E{y(t) | Ye1}

Thus, we have Y; = Y;—1 @ span{e(t)}, where & denotes the orthogonal sum. It
therefore follows that

Bt+1|t)=E{zt+1)| Y} = E{z(t + 1) | Yoo @ e(t)}
=EB{z(t+1) | Y1} + E{z(t + 1) | e(t)} (5.26)
The first term in the right-hand side is expressed as
E{x(t+1) [ Yo 1} = B{A®)z(t) +w(t) | Yo 1}
= A@t)2(t |t —1) (5.27)
and the second term is given by
E{x(t+1)]e(t)} = K(t)e(t) (5.28)

where K (t) € R"*? is to be determined below.
Recall that the optimality condition for K (t) is z(t + 1) — K (¢t)e(t) L e(t), i.e.

E{fe(t +1) - K®)e()]e" (1)} = 0

so that
K(t) = B{z(t + e ()} (E{e(t)e" (t)}) ! (5.29)

We see from the definition of e(t) that
E{z(t + 1)e (1)} = E{[A()x(t) + w®)][CH)E(t | t — 1) +0(B)]"}
=AW E{z@t)z (t |t —1)}C" (1)
+ A(t) E{x(t)v" (1)}
+ E{w(®)zT(t | t — 1)}C" (1)
+ E{w(t)v" ()} (5.30)

Noting that w(t), v(t) are white noises, the second and the third terms in the above
equation vanish, and the fourth term becomes S(t). Also, we have

c(t) =t [ t— 1)+ &t |t—1), &(t|t—1) La(t]t—1)

It therefore follows that
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E{z)zT(t|t-1)}=E{a@t|t—-1)z"(t|t-1)}=Pt|t-1)
Thus from (5.30), we get
E{z(t+1)e' (1)} = A(t)P(t | t — 1)C(t) + S(t)

Since R(t) > 0, we see that E{e(t)et(t)} = C#)P(t |t —1)C*(¢) + R(t) > 0.
Thus, from (5.29)

K(t)=[A@®)P#)CT () + S®)][CH)PH)CT (t) + R(t)] " (5.31)

where K (t) € R™*? is called the Kalman gain.

For simplicity, we write the one-step predicted estimate as £ (¢). Accordingly, the
corresponding estimation error and error covariance matrix are respectively written
as &(t) and P(t). But, the filtered estimate and filtered error covariance matrix are
respectively written as (¢ | ¢t) and P(¢ | t) without abbreviation.

Lemma 5.8. The one-step predicted estimate satisfies
F(t+1)=A@)z(t) + K(@)[y() — C(t)&(t)] (5.32)
with £(0) = p,(0), and the error covariance matrix is given by

P(t+1)=A)Pt)AY(t) — K@t)[C(t)P(t)Ct (t) + R()] K™ (1)
+Q(1), P(0) = I11(0) (5.33)

Also, the predicted estimate &(t + 1 | t) is unbiased, i.e.
E{z(t+1)—i(t+1)} =0, ¢t=01,--- (5.34)

Proof. Equation (5.32) is immediate from (5.26), (5.27) and (5.28). Now, it follows
from (5.17a) and (5.32) that the prediction error satisfies

F(t+1) = [A(t) — K({)C®)]E(t) +w(t) — K ()v(t) (5.35)

Since w(t) and v(t) are white noises with mean zero, the expectation of both sides
of (5.35) yields

E{z(t+ 1)} = [A(t) - K@)C ()] E{z(t)}

From the initial condition £(0) = p,(0), we have E{Z(0)} = 0, so that
E{z(t+1)} = (A(t) - K(1)C(?)) --- (A(0) = K(0)C(0))E{2(0)} = 0
This proves (5.34). Also, w(t) and v(¢) are independent of #(t), so that from (5.35),
B{z(t+ 1)z (t + 1)} = [A®t) - K(O)CO)]E{@ ()7 () }A(t) — K(6)C@)]"
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Hence, we see that
P(t+1) = [At) = K(6)CB]P#)[A) — K(H)C@)]*
+ Q)+ KORMOK  (t) — S(YK™* (1) — K(t)S™ (t)
By using K (t) of (5.31), we have (5.33). O

If the matrix C(t)P(¢)C" (t) + R(t) is singular, the inverse in (5.31) is to be
replaced by the pseudo-inverse. Given the one-step prediction &(t) := &(¢ | t—1) and
the new observation y(t), we can compute the new one-step prediction Z(t + 1) :=
Z(t+ 1] t) from (5.32), in which we observe that the Kalman gain K (¢) represents
the relative weight of the information about the state vector z(¢ + 1) contained in the
innovation e(t).

Lemma 5.9. Given the one-step predicted estimate &(t), the filtered estimate Z(t | t)
and its error covariance matrix P(t | t) are respectively given by

&(t]t) = z(t) + Ks(t)e(t) (5.36)
Ky (t) = P(O)CT(®)[C)P(H)CT (t) + R(1)] ™! (5.37)
and
P(t|t) = P(t) — P()CT@®)[C(t)P(t)CT(t) + R(t)]T'C(t)P(t)  (5.38)
Proof. By definition, the filtered estimate is given by
B(t ] 1) = E{a(t) | Yo} = E{z(t) | Yor @ ()}
= E{x(t) | Y1} + E{a(t) | e(t)} = () + E{x(t) | e(t)}
where we have
Efa(t) | e(t)} = E{a(t)e™ (0} (Ble(e” (1)) e(t)
= E{z()[F" (1) CT () + 0" ()]} (E{e(t)e" (1)}) " e(t)
= P(t)CT(D)[C()P#)CT (1) + R(t)]'e(t) =: K;(t)e(t)
This proves (5.36) and (5.37). Moreover, the estimation error is given by
B(t]t) = @(t) — P()CT (H)[R(t) + C()P(#)CT ()] 'e(t)

Noting that E{Z(t)e! (t)} = P(t)C™" (t) and taking the covariance matrices of both
sides of the above equation yields (5.38). O

Using the algorithm (5.36) ~ (5.38), the filtered estimate Z(¢ | ¢) and associated
error covariance matrix P(¢ | t) can be computed from the predicted estimate Z(t)
and the associated error covariance matrix P(t). Summarizing the above results, we
have the following filter algorithm.
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Theorem 5.1. (Kalman filter) The algorithm of Kalman filter for the discrete-time
stochastic system described by (5.17) and (5.18) is given by the following (i) ~ (v).

(i) Filter equations
z(t+1)=A)z(t) + K(t)[y(t) — C(t)z(t)] (5.39a)
ot ]t) =2(t) + Kp(8)[y(t) — C@)2(t)] (5.39b)
(ii) The innovation process
e(t) = y(t) — C(t)a(t) (5.40)
(iii) Kalman gains
K@) =[A®)P®)CT(t) + SHCHPH)CT(t) + R~  (5.41a)
K (t) = P)CT(t)[C(t)P#)CT (t) + R(1)]™" (5.41b)
(iv) Error covariance matrices

P(t+1)=A@t)P(t)AT(t) — K@)[Ct)Pt)CT (t) + R(t)] K™ (¢)
+Q(1) (5.42a)
P(t|t) = P(t)— P()CT@)[C{t)P(t)CT(t) + R(t)]"*C(t)P(t) (5.42b)

(v) Initial conditions

#(0) = pa(0),  P(0) = I1(0) (5.43)
Figure 5.3 displays a block diagram of Kalman filter that produces the one-step
predicted estimates %(t) and Z(t + 1) with the input y(t). O
y(t) +  e(t) + &(@+1) (t)
>(A> > K(t) >(A> - o1 . >
- +
A(t) « .
o) <

Figure 5.3. Block diagram of Kalman filter

The structure of Kalman filter shown above is quite similar to that of the discrete-
time stochastic system of Figure 5.1 except that Kalman filter has a feedback-loop
with a time-varying gain K (¢). We see that the Kalman filter is a dynamic system
that recursively produces the state estimates & (¢ + 1) and Z(¢ | ¢) by updating the old
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estimates based on the received output data y(¢). The Kalman filter is, therefore, an
algorithm suitable for the on-line state estimation.

Equation (5.42a) is a discrete-time Riccati equation satisfied by P(t) € R"*".
Being symmetric, P(t) consists of n(n + 1)/2 nonlinear difference equations. We
see that the Riccati equation is determined by the model and the statistics of noise
processes, and is independent of the observations. Thus, given the initial condition
P(0) = II(0), we can recursively compute P(t), t = 1,2, - -, and hence K (t), t =
1,2,.-- off-line.

It follows from the definition of the innovation process e that the Kalman filter
equation is also written as

B(t+1) = A@)E() + K ()e(t) (5.44a)
y(t) = C(t)i(t) + e(t) (5.44b)

Equation (5.44) as a model of the process y has a different state vector and a noise
process than those of the state space model of (5.17), but the two models are equiv-
alent state space representations that simulate the same output process y. The model
of (5.44) is called the innovation representation, or innovation model. The innova-
tion model is less redundant in the noise models, and is often used in the stochastic
realization, or the state space system identification.

Example 5.4. Consider an AR model described by

where 6 is an unknown parameter, and v is a white noise with N(0, ). The problem is
to estimate the unknown parameter 8 based on the observations Y;. Define z(t) = 6
and w = 0. The AR model is rewritten as a state space model

z(t+1) = z(t), y(t) = c(t)z(t) + v(t) (5.45)

where ¢(t) = y(t — 1). The state estimate based on the observations gives the least-
squares estimate of the unknown parameter, i.e.,

Bt +1):=FE{a@t+1) | Y} =0t +1) = E{0 ] Y¢}
Applying Kalman filter algorithm of Theorem 5.1 to (5.45) yields

c(t)p(t)

2op(e) 4 » VO ~<IOL 80 =0

6(t+1) =0(t) +

p(t)

D= i)+

p(0) =po >0

Since po > 0, we have p(t) > 0 for all ¢ > 0. Thus the inverse p~* () satisfies

P =0+ 0, p 0 =5
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so that
1 t
W =pt Y w1
=1

Since, from Example 4.4, the process y is ergodic, we have

t—oo

t
. 1 2/, 2
lim ti_gly (i—-1)=o0,

in the quadratic mean. Hence for large ¢,

2

-1 -1, % )1
P~ + p(t) 02 ) ¢

showing that the estimate 6 (t) converges to the true 6 in the mean square sense with
the asymptotic variance of the order 1/¢. O

Remark 5.1. Recall that it is assumed that the coefficients matrices in the state space
model of (5.17) are deterministic functions of time ¢. However, the state space model
of (5.45) does not satisfy this basic assumption, because ¢(t) is a function of the
observation y(t — 1). Thus strictly speaking the algorithm of Theorem 5.1 cannot be
applied to the state space model with random coefficients. O

In this regard, we have the following result [28]. Recall that the g-algebra JF; is
defined by F; = o{y(0),y(1),--- ,y(t)}.

Lemma 5.10. Suppose that for the state space system of (5.17), the conditions (i) ~
(iv) are satisfied.

(i) The noise vectors w and v are Gaussian white noises.
(ii) The a priori distribution of the initial state x(0) is Gaussian.

(iii) The matrices A(t), Q(t) are Fy-measurable, and C(t), S(t), R(t) are Fi_1-
measurable.

(iv) The elements of A(t), C(t), Q(t), S(t), R(t) are bounded.

Then the conditional probability density function p(z(t) | F:) of the state vector
given the observations is Gaussian.

Proof. For a proof, see [28]. O

This lemma implies that if the random coefficient matrices satisfy the conditions
above, then the algorithm of Theorem 5.1 is valid, and so is the algorithm of Example
5.4. In this case, however, the estimates &(¢ | t) and Z(t) are to be understood as the
conditional mean estimates.

In the next section, we consider stochastic systems with exogenous inputs, which
may be control inputs, reference inputs or some probing signals for identification. A
version of Kalman filter will be derived under the assumption that the inputs are
F;-measurable.
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w(t) u(t)
u(t s+ (t + oyt
() . B(t) +><:> ( + )> 2_1 (.) . C(t) +><v> y(z
+
At)

Figure 5.4. Stochastic system with inputs

5.4 Kalman Filter with Inputs

Since there are no external inputs in the state space model of (5.17), the Kalman filter
algorithm in Theorem 5.1 cannot be applied to the system subjected to exogenous or
control inputs. In this subsection, we modify the Kalman filter algorithm so that it
can be applied to state space models with inputs.

Consider a discrete-time stochastic linear system

z(t+1) = A(t)z(t) + Bu(t) + w(t) (5.46a)
y(t) = C(t)z(t) + v(t) (5.46b)

where u(t) € R™ is the input vector, and B(t) € R™*™ is a matrix connecting
the input vector to the system as shown in Figure 5.4. We assume that u(t) is F;-
measurable, i.e., u(t) is a function of the outputs y(0), y(1), -+ -, y(¢), including
deterministic time functions. We say that 3;-measurable inputs are admissible inputs.
Since the class of admissible inputs includes J;-measurable nonlinear functions, the
process  generated by (5.46a) may not be Gaussian nor Markov. Of course, if u(t)
is a linear output feedback such that

u(t) = L(t)y(t) = L(t)C(t)z(t) + L(t)v(t), L(t) e R™*?

then {z(t), t = 0,1, -} becomes a Gauss-Markov process.
In the following, we derive a filtering algorithm for (5.46) that produces the one-
step predicted estimates 4(t) and Z(t + 1).

Lemma 5.11. Suppose that x.,,(t) and x,,(t) are the solutions of

Tw(t+1) = A(t)zw (t) + w(t), 24, (0) = x(0) (5.47)
and
Ty(t+ 1) = A(t)xy () + B(t)u(t), z,4(0) =0 (5.48)
respectively. Then, the solution x(t) of (5.46a) is expressed as
(t) = o () + zu(t), t=0,1, - (5.49)

Proof. A proof is immediate from the linearity of the system. O
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By using the state transition matrix of (4.60), the solution of (5.48) is given by

t—1
zu(t) =Y Pt k+1)Bk)u(k), t=0,1,-- (5.50)

k=0
Thus it follows that x,(¢) is a function of u(0), u(1), --- , u(t — 1), so that z,(t)

is F;_1-measurable, and hence F;-measurable. From the property of conditional ex-
pectation,

Bt | t) = E{ze(t) | Tt} + zu(t) (5.51a)
2(t) = BE{xy(t) | Fio1} + 2u(t) (5.51b)

Since z,(t) is known, it suffices to derive an algorithm for computing the estimates
of the vector z,, (t) of (5.47) based on observations.

Lemma 5.12. By using (5.46b) and (5.49), we define
h(t) == y(t) = C(t)zu(t) = C(t)w(t) + v(t) (5.52)

Let ! be the o-algebra generated by {h(i),i = 0, 1, ---, t}. Then, TP = F,
holds, implying that the process h of (5.52) contains the same information carried
by the output process y.

Proof. Since xz,,(t) is F;-measurable, we see from (5.52) that h(t) is F;-measurable.
Thus, we get I = o{h(0), h(1), ---, h(t)} C F,. Now, we show that F, C F.
From (5.50) and (5.52),

y(t) = h(t) + C(t) z_: D(t, k+ 1)B(k)u(k)

k=0

For t = 0, we have y(0) = h(0), so that ¥ = F% holds. For t = 1, y(1) = h(1) +
C(1)B(0)u(0). Since u(0) is Fo-measurable, and Fo = F2 holds, y(1) is the sum
of h(1) and F2-measurable C(1)B(0)u(0), implying that y(1) is F"-measurable.
Thus, we get I, C "J"{’. Similarly, we can show that F;, C f}'{‘ holds. Hence, we have
Fh=9,t=0,1,---. O

Let the predicted estimates of the state vector ., (t) of (5.47) be given by
Bu(t+1) = Blz,(t +1) |57}, du(t) = Blzu(t) | 571}
It follows from (5.51) that
Tt+1) =2t +1)+z,(t+1) (5.53a)
Z(t) = Ty (t) + 24, (2) (5.53b)

Since the state vector z,,(t) is given by (5.50), the algorithm is completed if we can
compute £,,(t) and Z,, (¢t + 1). From (5.47) and (5.52), we have
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T (t+ 1) = A(t)zw (t) + w(t) (5.54a)

h(t) = C(t)xw (t) + v(t) (5.54b)

This is a stochastic linear system with the state vector x,, () and with the observation
vector h(t). Moreover, this state space model does not contain external inputs; hence

we can apply Theorem 5.1 to derive the Kalman filter algorithm for (5.54).
The innovation process for h of (5.54) is given by

h(t) — C(t)Zw(t)
= y(t) — C(Ou(t) — COu (1)
y(t) — C(H2(t) = e(t)

so that ey, coincides with the innovation process e for the observation y. Also, from
(5.49) and (5.53), we have

eh(t)

x(t) —Z(t | t) = u(t) — Tu(t | T)
z(t+1)—2(t+1) =zt +1) — 2t +1)
Thus the error covariance matrices are given by
P(t|t) = E{[zw(t) — Tt | 1)][Tw(t) — 2o (t | )]} (5.55a)
Pt+1) = B{[zy{t+1) — &yt + D][zw(t + 1) — 2, + D]T}  (5.55b)

This implies that the error covariance matrices are independent of the admissible
input u, so that they coincides with the error covariance matrices of the system de-
fined by (5.54). Hence, the prediction error Z(t) = z(t) — #(¢), t = 0,1, --- isa
Gauss-Markov process with mean zero and covariance matrix P(t).

Theorem 5.2. Suppose that u(t) in (5.46) be F-measurable. Then, the Kalman filter
algorithm for the stochastic system with admissible inputs is given by (i) ~ (iv).

(i) Filter equations

B(t+1) = AD)&(t) + Bt)u(t) + K (t)e(?) (5.56a)
Bt [ ) = &(t) + K (De(t) (5.56b)
e(t) = y(t) — C)&(t) (5.56¢)

(ii) Filter gains
K(t) = [A®)Pt)CT (1) + SH))[Ct)P()CT (t) + R(t)] ! (5.57a)
K (t) = P)CT()[C(t)P#)CT (t) + R(1)] ™" (5.57b)

(iii) Error covariance matrices
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Pt+1)=At)Pt)AT(t) — K@®)[CHPH)CT(t) + R(t)] K™ (¢t)
+Q(t) (5.58a)
P(t|t) = P(t)— P(t)CT@)[C(t)P(t)CT (t) + R(t)]*C(t)P(t) (5.58b)

(iv) Initial conditions
2(0) = pe(0),  P(0) =11(0) (5.59)

Proof. It follows from Theorem 5.1 that the Kalman filter for the system described
by (5.54) is given by

To(t+1) = A(t)Zw(t) + K(t)en(t) (5.60a)
Tow(t | 1) = 2 (t) + Ky¢(t)en(t) (5.60b)
From (5.48), (5.53), (5.60) and the fact that e (t) = e(t), we get
Ft+1)=2,(t+1) +z.(t+1)
= A(t)Zw(t) + K(t)e(t) + A(t)zu(t) + B(t)u(t)
= A(t)z(t) + B(t)u(t) + K(t)e(t)
Thus we have (5.56a). From (5.53) and (5.60),
T t) =Tw(t|t) +xu(t) = 2u(t) + Kr(t)e(t) + zu(t)
=&(t) + Ks(t)e(t)
This proves (5.56b). Equations (5.57) ~ (5.59) are obvious from (5.55). O

Figure 5.5 shows a block diagram of the optimal filter. It seems that the form
of optimal filter is quite obvious in view of Figure 5.4, but F;-measurability of the
inputs is needed for the filter in Figure 5.5 to be optimal in the sense of least-squares.

u(t) . B(t)
y(t) 4 et L, Et+ ) 2(t)
>Q > K(t) >Q - T 1 . >

Figure 5.5. Block diagram of Kalman filter with inputs
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5.5 Covariance Equation of Predicted Estimate

Recall from (5.17a) that the covariance matrix II(t) = cov{z(t)} of the state vector
z(t) satisfies (4.67). As in (4.77), we define

CT(t) = A)II(H)CT(t) + S(t)
It then follows from Lemma 4.9 that the covariance matrix of y is expressed as
At)--- A(s + 1)CT(s), t>s
t=s (5.61)
SATWCT(@),  t<s

/\
o~

Ayy(t,s) = (t

+1)-
For simplicity, we define A(t) := Ay, (¢,t). Then, in terms of A(t), C(t), C(t),
A(t), we define a new Riccati equation

Dt+1)=AB)Z AT (@) + (CT () — A) X ()CT (1))
X [A(t) = C(H)Z(H)CT ()] H(C(t) — C(H) (AT ()  (5.62)

with X(0) = 0. The following theorem gives a relation between the new Riccati
equation (5.62) and the Riccati equation (5.42a) satisfied by P(t).

Theorem 5.3. The solution X(t) of Riccati equation (5.62) is the covariance matrix
of the predicted estimate I(t), and the relation

P(t) = II(t) — X(t) (5.63)
holds. Moreover, the Kalman gain of (5.41a) is equivalently expressed as
K(t) =[C7(t) = AW Z()CT @)][A®) - CH) 2T (1) (5.64)
Proof. From ¥(0) = 0, (5.63) is obvious for ¢ = 0. Since
A(0) = C(0)IT(0)CT(0) + R(0),  C™(0) = A(0)I1(0)C™(0) + S(0)
we see from (5.64) that
K(0) = [A(0)II(0)CT(0) + S(O))[C(0)I(0)CT (0) + R(0)] ™"

The right-hand side of the above equation equals the Kalman gain at ¢ = 0 [see
(5.41a)]. Suppose that (5.63) and (5.64) are valid up to time ¢. Then, from (4.67) and
the definition of A(¢),

H(t+1) = Z(t+1) = A (AT () + Q(t) — At) X (t) AT (t)
= K@)[A(t) - C(H)Z(OCT (IK™ (1)
= AW PHAT() + Q1)
— K®[CHPHCT (1) + ROIKT(H) = P(t+1)



128 5 Kalman Filter
This implies that (5.63) holds for time ¢ + 1. Further, we have
CTt+1)—At+ )Xt +1)CT(t+1)
=At+1D)Pt+1)CTt+1)+S(t+1)
At+1) = Ct+1)X(t+1)CT(t+1)
=Ct+1DPt+1CTEt+1)+R(t+1)

so that (5.64) also holds for time ¢ + 1.
We show X(t) = cov{Z(t)}. By the property of conditional expectation,

B{a(t)} = BE{E{z(t) | Fia}} = E{z(t)} = pa(t)

Hence, we have
o(t) = pa(t) = 2(t) — pa(t) + 2(t)
where Z(t) — p.(t) L Z(t). Computing the covariance matrix of the above equation
yields
(1) = B{[&(t) — pa(O)][&(1) — pa ()]} + E{&(0)Z" (1)}
where E{%(t)Z"* (t)} = P(t), so that

E{[2() - pe(@0)][2(1) — pa()]} = 2(1)
as was to be proved. O

It should be noted that the Riccati equation of (5.62) is defined by using only the
covariance data of the output signal y [see (5.61)], so that no information about noise
covariance matrices Q(t), S(t), R(t) is used. Thus, if the statistical property of y is
the same, even if the state space realizations are different, the Kalman gains are the
same [146]. The Riccati equation (5.62) satisfied by the covariance matrix X'(¢) of
the predicted estimate plays an important role in stochastic realization theory to be
developed in Chapter 7.

5.6 Stationary Kalman Filter

Consider the Kalman filter for the stochastic LTI system of (4.70). Since all the
system parameters are time-invariant, it follows from (5.39a) in Theorem 5.1 that the
Kalman filter is expressed as

B(t+1) = Ai(t) + K(t)[y(t) — Ci(t)] (5.65)

where Z(t) := Z(¢ | t — 1) with the initial condition £(0) = p,(0), and where the
Kalman gain is given by

K@) = [AP(t)C" + S|[CP(t)CT + R
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Also, the error covariance matrix P(t) := P(t | t — 1) satisfies the Riccati equation
P(t+1)=APH)AY — K@#)[CP(t)CT + RIK™ (t) + Q (5.66)

with P(0) = I1(0).

Suppose that a solution P(t) of the Riccati equation (5.66) converges to a con-
stant matrix as ¢ — oo. Put P(t) = P(t + 1) = P in (5.66) to get an algebraic
Riccati equation (ARE)

P = APA"Y — (APC" + S)(CPC* + R) Y (APCT + )Y +@Q  (5.67)
In this case, K (t) converges to the stationary Kalman gain
K = (APC" + 8)(CPC* + R)™* (5.68)
Hence, the filter equation (5.65) becomes
Zt+1)=(A-KQC)&(t) + Ky(t) (5.69)

This filter is called a stationary Kalman filter that produces the one-step predicted
estimates of the state vector.

In the following, we define  := A — SR™'C and M := Q — SR1ST. Then,
it can be shown that the ARE of (5.67) reduces to

P =¢(P - PCt[CPC" + R'CP)®* + M (5.70)
Theorem 5.4. The following statements are equivalent.
(i) The pair (B, M'/?) is stabilizable and (C, &) is detectable.

(ii) There exists a unique nonnegative definite solution P of the ARE (5.70); more-
over, P is stabilizing, i.e., ® — I'C is stable, where

I =oPCT(CPCT +R)!

Under the above condition (i), the solution P(t) of the Riccati equation (5.66) for
any P(0) > 0 converges to a unique nonnegative definite solution P.

Proof. For proof, see [11,20,97]. O
Example 5.5. Consider a scalar system
w(t+1) = ax(t) +w(t),  y(t) =x(t) +o(t)

where A=a,C=1,Q=¢>0,5=0, R=r>0.From (5.39a) ~ (5.42b) of
Theorem 5.1, the Kalman filter and Riccati equation are given by

R _ar ap(t) A1) —
T(t+1)= p(t)—f-rx(t) +p(t) +ry(t), z(1)=0 (5.71)
e+ =0 = (5.72)

p(t) +r
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Thus the ARE reduces to p? + [(1 — a®)r — ¢]p — gr = 0, so that the ARE has two
solutions

py = ; [(a2 —1)r+q+[(a® = 1)r +q]? +4rq} >0
p =, [(@ = Dr+a- Vi@ r+q? +4rg) <0
Puttinga = 0.8,7 = 1, ¢ = 2, we have py = 2.4547 and p_ = —0.8147. In Figure
5.6, the solutions of (5.72) for ten random initial values p; ~ N(0,4) are shown. In
this case, all the solutions have converged to p, = 2.4547. O
4
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Figure 5.6. Solutions of the Riccati equation (5.72) for random initial values, where the initial
time is taken as ¢ = 1 for convenience

We see that the stationary Kalman filter is expressed as

2(t+1) = Az(t) + Ke(t) (5.73a)
y(t) = Cz(t) + e(t) (5.73b)

By means of Theorem 5.3, the stationary Kalman gain is also expressed as
K= (CY - AxC™)(A(0) —cxct)™! (5.74)
where the covariance matrix X' = cov{Z(t)} satisfies the ARE
Y =AXAT + (O - AZCY)(A(0) —CcxCt)y N (C - CxAY) (5.75)

The state space equation (5.73) is called a stationary forward innovation model for
the stationary process y, where the noise model is less redundant than that of (4.70).
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5.7 Stationary Backward Kalman Filter

In this section, we derive the Kalman filter for the backward Markov model for the
stationary process y, which is useful for modeling stationary processes.
Consider the backward Markov model of (4.83), i.e.,

oyt — 1) = AV 2y (t) + wy (1) (5.76a)
y(t) = Cap(t) + vp(t) (5.76b)

where w; and v, are white noises with covariance matrices
wy(t) | T T _[eQs
E{ {vb(t) } [wy (s) vy ()] = 3T p Ots (5.77)
Moreover, we have cov{z(t)} = II = II~! and
Q=I-A"MA, S=C"-A'IIC*, R=A00)-CIIC* (5.78)
In order to derive the backward Kalman filter, we define the future space

‘Ht = Span{y(t)v y(t + 1)7 o } (579)

Since we deal with stationary processes with mean zero, no constant vectors are
included in the right-hand side of (5.79), unlike the past space defined by (5.20).
Then, the one-step backward predicted estimate is defined by

o (t) = E{zy(t) | Y50} (5.80)
Also, we define the backward innovation process by

eo(t) = y(t) — E{y(t) | Y/, } (5.81)

Lemma 5.13. The backward process ey is a backward white noise with mean zero
and covariance matrix

covies(t)} = A(0) — CEXC* (5.82)

where ¥ = cov{z;(t)}.
Proof. By the definition of orthogonal projection, we see that E {es(t) | Y- 1} =0,
E{ey(t)} = 0. For s < t, it follows that e;(t) € Y, C HjH, so that

Efes(t)e; (5)} = E{E{es(t)e; (s) | Y71}
= E{es(t)E{e; (s) | Yiia}} =0

Similarly, one can show that the above equality holds for s > ¢, implying that e;(t)
and e (s) are uncorrelated for s # t. This shows that e, is a zero mean white noise.
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We compute the covariance matrix of ep. It follows from (5.76b) and (5.81) that

ev(t) = y(t) — E{Cxy(t) +vp(t) | Y1}
y(t) — Cy(t) = COlap(t) — 2o (1)] + vo(t)

Hence, noting that v, () is uncorrelated with x(t) and Z(¢) € Ys41, we have
cov{es(t)} = CB{[zp(t) — &(D)]as(t) — 2 ()] }CT + E{vy(t)vy (1)}
= CE{zy(t)z; (1)}CT — CE{xs(t), (1)}CT
— CE{&y)zf ()}OT + CE{ay(t)2] (1)}CT + R (5.83)
Since, from (5.80), z;(t) — &4 (t) L Z4(t), we have
E{my ()3, (1)} = E{a, (07, (1)} = (5.84)
Applying this relation to (5.83) yields
covies(t)} = CIICT — CECT + A(0) — CIICT
— A(0) - O5CT
This completes the proof. O
The backward Kalman filter is given by the next theorem.

Theorem 5.5. (Backward Kalman filter) The backward Kalman filter equations for
the backward Markov model are given by (i) ~ (iv).

(i) The filter equation

iy(t —1) = ATay (1) + KT [y(t) — Ci(t)] (5.85)

where AT — KT C is stable.
(ii) The innovation process
es(t) = y(t) — CL(t) (5.86)

(iii) The backward Kalman gain
KT =(C" - AT2C")(A(0) — 20! (5.87)

(iv) The ARE satisfied by the covariance matrix of the backward predicted estimate
Zp(t) is given by

Y=ATSA+(CY - ATECT)(A(0) - CECT)TH(C - CXA)  (5.88)

This is the dual ARE of (5.75), satisfied by the covariance matrix X = cov{Z(t)}.
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Proof. It follows from (5.76a) and Lemma 5.13 that
E{ay(t—1) | Yo} = E{ay(t = 1) | Y1 © en(t)}
= B{A 2y (t) + w(t) | Y1} + E{as(t = 1) | es(t)}
= ATE{@y(t) | Yorr} + Bfas(t — 1) | es(t)}
Thus from (5.80), we get (5.85), where the backward Kalman gain is determined by
K'Y = cov{zy(t — 1)ef (t)}(cov{es(t)}) *
It follows from (5.84) that
E{zy(t — D)ey (1)} = B{[A 24 (t) + w (8)][Clzs(t) — 24 ()] + v (1)] "}
= AT[ICT - ATSCT 4 §
=CT -4tz

Thus the backward Kalman gain is given by (5.87). Finally, the dual ARE (5.88) can
be easily derived by computing the covariance matrix of (5.85). O

In view of Theorem 5.5, the backward innovation model is given by

Byt —1) = ATa(t) + K ey(t) (5.89a)
y(t) = Cip(t) + ep(t) (5.89b)

This should be compared with the forward innovation model of (5.73).

We are now in a position to summarize the different Markov models for a station-
ary process y, including forward and backward Markov models defined in Sections
4.7 and 4.8, and the forward and backward innovation models obtained in Sections
5.3 and 5.7 through the stationary Kalman filters.

Table 5.1. Schematic diagram of different Markov models

Forward model Kalman filter Forward innovation model
(IT, A, C, C, A(0)) — (¥, A K, C, A0))
+
(IT7 1, AT, C, C, A(0)) — (Z,AT K™, C, A(0))
Backward model Backward Kalman filter Backward innovation model

Table 5.1 displays a schematic diagram of different Markov models for the same
stationary process y with the covariance matrix Ay, (l). From Lemmas 4.10 and
4.11, we see that (A,C,Q, S, R) determines (II, A,C,C, A(0)), and vice versa.
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Hence, we say that the stationary forward model (4.70) with {9 — —oc is char-
acterized by the quintuple (I, A, C, C, A(0)), where A(0) := A,,(0). Also, by the
similar argument, we see that the backward Markov model (4.83) is specified by
(II-1, AT, C,C, A(0)). On the other hand, the forward innovation model of (5.73)
is characterized by the quintuple (X, A, K, C, A(0)), and the backward innovation
model by (X, AT, KT, C, A(0)); however, note that X # ¥~

5.8 Numerical Solution of ARE

The stabilizing solution X' of the ARE (5.75) can be obtained by using a solution
of the generalized eigenvalue problem (GEP) associated with the ARE. Consider the
ARE given by (5.75), i.e.

Y =AYAT + (CT — AZC")(A(0) —CcxCT)H(C - CxAT) (5.90)

where the Kalman gain is given by (5.74).
Define F' := A — CTA=(0)C. Then, (5.90) is rewritten as (see Problem 5.7)

Y =FXFY + FRCT(A(0) - CECT) 1CZFT + CTA Y (0)C  (591)
Associated with (5.91), we define the GEP

- 0 {Zl] R lI” _CTA—l(O)C] {zl] (5.92)

—CTATH(0)C I, | |22 0 F 22

Suppose that there are no eigenvalues on the unit circle (|z| = 1). Then, we can
show that if A # 0 is an eigenvalue, then the inverse 1/ is also an eigenvalue (see
Problem 5.8). Hence, (5.92) has 2n eigenvalues, and n of them are stable and other
n are unstable.

Ux
LetU = U,
ing to the n stable eigenvalues of (5.92). Thus, we have

[Ul} _ l[n —cT AT (0)C

€ C?"*™ be the matrix formed by the eigenvectors correspond-

FT 0

—CTA7Y(0)C I, | [U2 0 F U

[Ul] Jo (5.93)

where all the eigenvalues of Jy € C"*™ are stable.

Lemma 5.14. Suppose that the GEP of (5.92) has no eigenvalues on the unit circle.
Also, suppose that det(Uy) # 0 and that R(Y) := A(0) — CXCT > 0. Then, the
stabilizing solution of the ARE (5.90) is given by the formula

Y =UU;? (5.94)

Proof. [124] We show that X' = U, Ufl is a solution of the ARE of (5.91). From
(5.93), we get
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FTU, = U Jy — CTATH(0)CU, Jy
FUyJy = —CTA~10)CU, + Uy
Post-multiplying the above equations by U; ! yields
F' =0, JoUTt = CY A7 0)CUL I U (5.952)
UsUTt = FU JoUT + CT A7 (0)C (5.95b)
From (5.94) and (5.95b),
Ri¢(X): = FXF' - £+ FXCT(A(0) — cxCY)~'CEFT + CT A7 (0)C
=FYFY -~ FU,Jo U + FECT(A(0) — CcxCt) 1O X F?
Also, from (5.95a), we have
Ric(X) = FULUT U JoUTt = CT A=Y (0)CULJoUTY] = FULJo U
+ FUU; CT (A(0) — cUU Ot eu,U ™
x [Uy JoUTt — CT A1 0)CUL JoUT Y]
= —FU,U; ' CT A=Y 0)CU JoU;
+ FULU;CT (A(0) — CULUTCTY UL I UL
— FULUTCM (A(0) — CUUTHCY) Y
x CULU; T CT A=Y (0)CUL JoU

Define a := FU,U; *C7, B := CUsJoU; * and y := CUxU; 'CT. Then, it
follows that

Ric(¥) = —ad™1(0)8 + a(4(0) = 7)7'8 — a(4(0) =) "'vA7(0)3
= —a[A71(0) = (A(0) =) 7" + (4(0) = 7)1y ATH(0)]8
= —a(A(0) = 7) T (A(0) =) ATH(0) = T+ 747 H(0)]B =0

as was to be proved.

Finally we show that the closed loop matrix Ax := A — KC' is stable. Recall
that K = (CT — AXCT)(A(0) —CXCT)~1. Since A = F +CTA71(0)C, we see
that

Ay =FT + o471 (0)C
—CT(A(0) —CczChHHC - CZ[FT + CTATH(0)0))
=FT +CT(A(0) —cxCcY)~lCxFT + cT A= (0)C
—CT(A(0) = CcxCy™H I - CcECT AT 0)C
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It is easy to see that the second and third terms in the right-hand side of the above
equation vanish, so that

Ay =F" + 0T (A(0) —cxocT) e FT (5.96)

Substituting F'T of (5.95a) into (5.96) yields

AL = FT + 0T(A(0) — cxCY) LCU U FT
= U JoU; ! = CT A=Y 0)CULJoUTt + CT (A(0) — cx e !
x CUU; UL JoU;t — CT AT (0)CUL Jo U
= U JoUt + T (A(0) — cxCct)y teU, Jy U
— CT(A(0) — CZCT)TH(A(0) — CxCT) + CxCT)
x A7H0)CUy JoU™
= U, JoU!

Thus the eigenvalues of A are equal to those of .Jy. This completes the proof. [

5.9 Notes and References

There is a vast literature on the Kalman filter; but readers should consult basic
papers due to Kalman [81], Kalman and Bucy [84], and then proceed to a survey
paper [78], books [11,23,66,79], and a recent monograph for adaptive filtering
[139], etc.

Section 5.1 reviews a multivariate Gaussian probability density function based
on [14]; see also books [79, 111, 136] for the least-squares estimation (minimum
variance estimation). The state estimation problem for a Markov model is defined
in Section 5.2, and the Kalman filter algorithm is derived in Section 5.3 based on
the technique of orthogonal projection; see [11,23,66]. Also, in Section 5.4, the
Kalman filter in the presence of external inputs is developed by extending the
result of [182] to a discrete-time system.

Section 5.5 derives the Riccati equation satisfied by the covariance matrix X'(¢) of
the one-step predicted estimate, which is a companion Riccati equation satisfied
by the error covariance matrix. It should be noted that the Riccati equation for
X(t) is defined by using only the covariance data for the output process y. Thus,
if the covariance information of y is the same, the Kalman gain is the same even
if state space realizations are different [11, 146]. This fact is called invariance of
the Kalman filter with respect to the signal model.

The stationary Kalman filter and the associated ARE are derived in Section 5.6.
The existence of a stabilizing solution of the discrete-time ARE has been dis-
cussed. For proofs, see [97, 117] and monographs [20, 99].



5.10 Problems 137

e In Section 5.7, the backward Kalman filter is introduced based on a backward
Markov model for a stationary process, and relation among four different Markov
models for a stationary process is briefly discussed. These Markov models will
play important roles in stochastic realization problems to be studied in Chapters
7 and 8.

e Section 5.8 is devoted to a direct solution method of the ARE (5.75) due to
[103, 124], in which numerical methods for the Kalman filter ARE of (5.70) are
developed in terms of the solution of GEP. See also a monograph [125] in which
various numerical algorithms arising in control area are included.

5.10 Problems

5.1 Suppose that the probability density function of (z, y) is given by the Gaussian
density function

(,9) = X
PRy = 2r(1 — p?)/20,0,
_ 1 (@=p=)? _ 2p(@—pa)(y=py) | (y—pty)?
% e 2(1—p2?) o2 20y o2

where 0., 0, > 0 and |p| < 1. Show that the following relations hold:

o . .
E{z|y}=petp "(y—p), B{lz—E{z|y})’}=0c(1-p7)
Y
5.2 Let K,(t) be the Kalman gain for the covariance matrices a@Q(t), aS(t), aR(t),
aP(0) with @ > 0. By using (5.41a) and (5.42a), show that K (t) is the same
as K (t) of (5.41a).

5.3 Define the state covariance matrix I1(t) = E{[z(t) — p.(t)][z(t) — p(t)]T}.
Show that the following inequalities hold:

() > P()> Pt ) >0,  II(1) > D(1)
5.4 Consider an AR model
y(t) = a1yt — 1)+ -+ any(t — n) + w(t)

Then a state space model for y is given by

0 0 Ay Qn
1 An—1 An—1
z(t+1) = ) . x(t) + ) w(t) (5.97a)
1 ap aq

y() =[0---0 1]z(t) + w(t) (5.97b)
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Derive the Kalman filter for the above state space model, and show that the
Kalman filter is the same as the state space model. (Hint: The state variables of
(5.97a) are expressed as

21(t) = any(t—1), z2(t) =21t — 1)+ apn—1y(t—1), -+,
Tp(t) =zp—1(t—1)+a1y(t — 1)
Thus we see that the state vector z(t) := (z1(t), -+ ,z,(t))T, t > n can be
determined from y(k), ¥k = t — 1,--- ,t — n, so that we have P(t) = 0 for
t > n, and hence II(t) = X(t). It also follows from Q(¢) = R(t) = ¢ and
S(t) = Bqthat K(t) = B fort > n.)
5.5 By using (5.44) with A(t) = A, C(t) = C, show that

y(t) = e(t) + CK(t — De(t — 1) + CAK (t — 2)e(t — 2)
+ 4+ CATTK(0)e(0) + CA'2(0)

and that
y(0) C I e(0)
y(1) cA CK(0) I e(1)
: - : (0) + : . . :
Yt —1) cAt-1 CA2K(0) - CK(t—2) I |e(t—1)

This is useful for giving a triangular factorization of the covariance matrix of the
stacked output vector.

5.6 In Section 5.6, we defined ® = A — SR 'C and ' = PCT(CPCT + R) 1.
Show that ® — I'C' = A — K C holds. Also, derive (5.70) from (5.67).

5.7 Derive (5.91) from (5.90).
5.8 Consider the GEP of (5.92):

Nz=ALz, z€C™, XeC

LetJ = { _(} Ié‘ . Show that LJLT = NJNT holds. By using this fact, show

that if A # 0 is an eigenvalue of (5.92), so is 1/A.
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Realization of Deterministic Systems

We introduce the basic idea of deterministic subspace identification methods for a
discrete-time LTI system from the point of view of classical realization theory. We
first present the realization algorithm due to Ho-Kalman [72] based on the SVD
of the block Hankel matrix formed by impulse responses. Then we define a data
matrix generated by the observed input-output data for the system, and explain the
relation between the data matrix and the block Hankel matrix by means of zero-
input responses. Based on the LQ decomposition of data matrices, we develop two
subspace identification methods, i.e., the MOESP method [172] and N4SID method
[164, 165]. Finally, we consider the effect of additive white noise on the SVD of a
wide rectangular matrix. Some numerical results are included.

6.1 Realization Problems

Consider a discrete-time LTI system described by

z(t+1) = Az(t) + Bu(t) (6.1a)
y(t) = Cz(t) + Du(t), t=0,1, - -- (6.1b)

where x € R” is the state vector, u € R™ the control input, y € RP the output
vector, and A € R"*"™ B € R™*™, C € RP*™, D € RP*™ are constant matrices.
In the following, we assume that (A, B) is reachable and (C, A) is observable; in
this case, we say that (A4, B, C') is minimal.

From (6.1), the transfer matrix and the impulse response matrices of the system
are respectively given by

G(z)=D+C(:I - A)™'B (6.2)

D, t=0
G, = (6.3)
CA™'B, t=1,2,---

and
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where {G, t =0, 1, - - - } are also called the Markov parameters. We see that given
(4, B, C, D), the transfer matrix and impulse response matrices can uniquely be
determined by (6.2) and (6.3), respectively (see also Section 3.4).

This chapter considers the inverse problems called realization problems [72].

Problem A Suppose that a sequence of impulse responses {G;, t = 0, 1,---}, or
a transfer matrix G(z), of a discrete-time LTI system is given. The realization
problem is to find the dimension n and the system matrices (4, B, C, D), up to
similarity transforms.

Problem B Suppose that input-output data {u(t), y(¢), t = 0,1, ---, N — 1} are
given. The problem is to identify the dimension n and the system matrices
(A, B, C, D), up to similarity transforms. This is exactly a subspace identi-
fication problem for a deterministic LTI system.

6.2 Ho-Kalman’s Method

In this section, we present the realization method of Ho-Kalman based on the results
stated in Section 3.9, providing a complete solution to Problem A. Let the impulse
response of the system be given by (Go, G1, Ga, - -- ). Then, since D = Gy, we
must identify three matrices (A4, B, C).

Consider the input « that assumes non-zero values up to time ¢ = —1 and zero
fort =0,1,---,ie.,

w= (-, u(—3), u(—2), u(-1),0,0,0,--) (6.4)

Applying this input to a discrete-time LTI system, we observe the output for ¢ =
0,1,--- as shown in Figure 6.1. For the input sequence of (6.4), the output is ex-
pressed as

-1
y(t)= > Giu(i), t=0,1,-- (6.5)
This is a zero-input response with the initial state 2(0), which is determined by the
past inputs. It should be noted that the responses y(¢) fort = —1, —2, - - - are shown
by dotted lines.
We define the block Hankel operator with infinite dimension as

Gi1 Gy Gs Gy -+
Gy G3 G4 G5 -+

H=|G3GiGs5Ge - (6.6)
G4 G5 Gg Gy -

Then the input-output relation is expressed as
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Figure 6.1. Zero-input response of an LTI system

yr = Hu_ 6.7)
where y, and w_ are infinite dimensional vectors defined by
y(0) u(=1)
o= |V | = u-2)

Moreover, the observability and reachability operators are defined by

C

CA
0= |cazl, €=[B AB A’B --- ]

We present the basic theorem for the properties of block Hankel matrix, which
plays an important role in the later developments.

Theorem 6.1. (Properties of Hankel matrix) Suppose that (A, B, C) is minimal.
Then, the following (i) ~ (iv) hold.

(i) The block Hankel matrix H of (6.6) has finite rank if and only if the impulse
response has a factorization like (6.3).

(ii) The block Hankel matrix has rank n, i.e., rank(H) = n. Moreover, H has the
factorization of the form

H=0C=0TT '€, |T'| # 0
(iii) Let the state vector at t = (0 be given by £(0) = Cu_. Then (6.7) is written as
y; = 0z(0) (6.8)
(iv) The block Hankel matrix is shift invariant, i.e.,
H'=0"e=04-C=0-4C=0€" =H"

where ()1 denotes the upward shift that removes the first block row, and (-)<
the left shift that removes the first block column.
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Proof. Item (i) follows from Theorem 3.13, and items (ii), (iii), (iv) are obvious
from the definition. See also [162]. O

Item (iv) has the following physical meaning. From (6.7), we see that Im(H )
contains all the outputs after ¢ = 0 due to the past inputs up to ¢ = —1. Define

y(1)
Then, we have
yl =HM_ (6.9)

Hence, it follows from (6.9) that Im(H 1) contains all possible outputs after ¢ = 1 due
to the past inputs up to ¢ = —1. Since the system is time-invariant, this is equivalent
to saying that Im(H") contains the output after £ = 0 due to the past input up to
t = —2. Since the set of all inputs up to ¢ = —2 is a subspace of the space of all the
past inputs, we see that all resulting outputs Im(H ) should be included in Im(H).

The above properties of the block Hankel operator are extensively used for de-
riving realization algorithms. In fact, the celebrated Ho-Kalman algorithm described
below is entirely based on Theorem 6.1.

For the actual computation using finite number of impulse response matrices,
however, we must use the truncated block Hankel matrix of the form

Gl G2 G3 ot Gl
G2 G3 G4 T Gl+1
Hy, = Gs Gy G5 - Gy c Rkpxim (6.10)

Gr Gry1 Gra2 - - Grya

Also, the extended observability matrix Oy, and the extended reachability matrix C;
are defined by

C

CcA A
O = _ , € =[B AB A’B --- A"'B|

CA.k71

where k and [ should be greater than n'. Usually, we take n < k < [.
In the finite dimensional case, if rank(Hy ;) = n, we see from Theorem 6.1 (ii)
that
Hk,l = 0,C = OkTTilel, |T| 75 0 (6.11)

'In practice, the dimension 7 is not known. Since it is impossible to find an upper bound
of n by a finite procedure, it is necessary to assume an upper bound a priori.
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where rank(O) = n, rank(€;) = n. Also, concerning the extended observability
matrix, we have the following identity

c CA
CA CA?
: A= : = O0p_1A=0k(p+1:kp,:) (6.12)
CA"“_2 CA"“_1

To get a unique least-squares solution of A from (6.12), we see that O_; should be

full column rank, so that p(k — 1) > n. Thus, for a single output case (p = 1), the

relation turns out to be £ > n + 1, so that k£ should be strictly greater than n.
Similarly, from the extended reachability matrix, we have

ACi_1 =Ci(:;,m+1:1m) (6.13)

Lemma 6.1. (Deterministic realization algorithm [72, 184])
Step 1: Compute the SVD of Hy,; as

T
Hiy =10, Uil [% 8} WT] = ULV} (6.14)

where X is a diagonal matrix with the first n non-zero singular values of Hy, ;, so
that we have

o1 20-2Z...Zo—n>0:gn+1:0'n+2:...
Step 2: Compute the extended observability and reachability matrices as
Or =UBY?*T, ¢ =T"'512y" (6.15)

where T' € R"*" is an arbitrary nonsingular matrix.

Step 3: Compute the matrices A, B, C as
A=0!l_ 0k, B=C(:n,1:m), C=0k1:p,1:n) (6.16)

where O, = Op(p+1:kp,1:n) (= OZ) -

For computation of A, the identity of (6.12) is used. It follows from (6.13) that
the matrix A in Step 3 is also given by

A=¢r¢el, 6.17)

Example 6.1. Suppose that for the impulse inputu = (1, 0, 0, - - - ), we observe the
outputs
y=1(0,1,1,2,3,5,8, 13,21, 34, ---)

This output sequence is the well-known Fibonacci sequence generated by



146 6 Realization of Deterministic Systems
Gy =Gi—1 + Gi_a, t=2,3, -

with the initial conditions G = 0, G1 = 1. A realization of this impulse response
sequence is given, e.g., by [143]

01 1
A_L 1}, B_L}, C=110], D=0 (6.18)
and the transfer function is given by
Giz)= , °~ (6.19)
22— z-1 '

Now we use the algorithm of Lemma 6.1 to compute a realization. Recall that
it is necessary to take the number of rows k should be greater than n. Thus, taking
k =1 = 5, we have the following Hankel matrix

112 35
123 5 8
Hs5=12 3 5 8 13| e R
358 1321
5 8 13 21 34

By the SVD of Hj 5, we get
o1 = 54.5601, o9 = 0.4399, o, =0, >3

so that we have n = 2. By putting T" = I,

1.6179 0.0185 0.8550
A= 0.0185 —0.6179} , B= [—0.5187] ;. C=108550 —0.5187]
where the transfer function G(z) = (A, B, C) is also given by (6.19). O

We see that the matrices obtained above satisfy an interesting property that
A = AT and B = CT. If we use an asymmetric Hankel matrix, say Hy g, then
this property does not hold; however, the correct transfer function is obtained as long
ask, !> 2.

Lemma 6.2. Suppose that Hy, ; is symmetric in Lemma 6.1 and that T' = I,, in Step
2. If all the elements of X are different, i.e., 01 > 09 > -+ > 0, there exists a
matrix S = diag(£1, - - -, £1) such that A = SA™S and C = BT S hold.

Proof. The fact that Hy, ; is symmetric implies that k = [, m = pand Gl =Gy, t=
1,2,---.Let H := Hy in (6.14). Since HT = H,itfollows that H = UXVT =
VXUT, so that Im(H) = Im(U) = Im(V). Thus there exists a nonsingular matrix
S € R**" guch that U = V' S. Since I,, = UTU = STVTVS = STS, we see that
S = VTU € R**" is an orthogonal matrix. Let

5= {Sggl ‘(j . Spq € RDX() (6.20)



6.2 Ho-Kalman’s Method 147

where a, b € R"~! and ¢ € R. Comparing the (2, 2)-block elements of the identities
STS =1, and SST = I,,, we see from (6.20) that

lal> + =P+ =1 = |lall = |3
Also, UXVT = v XUT implies YST =S¥, so that from (6.20),
En—lsg_l = Sn—lzn—la Z’n—lb = a0n

From the second relation in the above equation,

aq
1 a
a= XY, 1b= b
On
Qn—1
where o; = 0; /0y, i =1, ---, n— 1. Since ||a|| = ||b||, we have
o+ Fan_y =aibi 4 dan b = b4 b
sothat (a3 —1)b2 +---+(a?_,—1)b2_; = 0.But,since; > 1,i =1, -+, n—1,
wehaveb; =0,i=1, ---, n — 1, implying that a = b = 0 and ¢> = 1. By means
. | Su-1 O

of these relations, we have S = 0 il} and

Enflsg‘fl = Snflznfla Snflsg‘fl = Infla ST Snfl = Infl

n—1

(n—=1)x(

Applying the above procedure to S,,_; € R »=1)  we can inductively prove

that S = diag(£1, --- , £1), a signature matrix.
Since 1" = I,, in (6.15), it follows that

Or =UZY?, € =x'2V"
Also, S and X'/? are diagonal, so that SX'/2 = ¥1/25. Thus, by using V = US,
Cr =212V T = 5125UT = 51 2UT = SOF

Hence we get
B=0C(:,1:p) =SSO} (1:p,:) =8SCT

and also t
T=S0ohT, el =(0,)'s

Thus from (6.13), we have
A=efel, =50)"0]_)"'s=5(0]_,0})"s=54"s

as was to be proved. O
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It should be noted that (A, B, C) derived in Lemma 6.2 is not balanced (see
Problem 6.2).

Example 6.2. Consider a scalar transfer function

pr2* + Paz + B3 _ _
G zZ)= P = z 1 + z 2 —+ -
(2) 22+ a122 + asz + as 9 92
where it is assumed that the transfer function is coprime and that the dimension is
a priori known (n = 3). Suppose that we are given an impulse response sequence

(g1, g2, +++ ). Since rank(H) = 3, there exists a vector T = [a3 as a; 1] such that
a
g1 92 g3 9a az 0
H346= (929394 95 | = 0
93 94 95 Je 1 0

so that £ € Ker(Hs 4). Let the SVD of Hj 4 be given by

’UT

o1 0 007 |“%
H374:U 00’200 2T s 01202203>0
U3
00030 |%
Uy

Hence we have
H3741)4 =0 = V4 € Ker(H3,4)

Since both £ and v4 belong to the one-dimensional subspace Ker(Hs 4), we get £ by
normalizing v4 so that v4(4) = 1.
In view of (6.11), we have

H3 = cil [b Ab A%b A%b]
cA?

Since (¢, A) is observable, it follows from Hj 4¢ = 0 that

(A% + a1 A% + as A+ a3l)b=0
Pre-multiplying the above equation by A and A?, and re-arranging the terms yield

(A3 + a1 A? + as A + azI)[b Ab A%b] =0
By the reachability of (4, b), we have det[b Ab A?b] # 0, and hence
AP+ a A2+ asA+asl =0

Since G(z) is coprime, the characteristic polynomial of A coincides with the de-
nominator polynomial of G(z), so that o; = a;, i = 1, 2, 3. Moreover, from the
identity
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Io g1 00 1
Ba| = 19261 0 a
B3 9392 91| |
we get the coefficients of the numerator polynomial. O

We see from above examples that state space models and transfer functions of
LTI systems can be obtained by utilizing the SVD of block Hankel matrices formed
by the impulse response matrices.

6.3 Data Matrices

Consider an discrete-time LTI system, for which we assume that the system is at rest
fort < 0,ie,u(t) =0,y(t) =0,t=—1, —2, ---. Suppose that the input-output
datau = (u(0), u(1), --- u(N —1)) and y = (y(0), y(1), - - - y(N — 1)) are given,
where N is sufficiently large. Then, for £ > 0, we get

0 0 u(0) u(N — k)
gkt -+ g0] w(l) - u(N—-k+1)
o .- . : :
w(0) u(l) --- w(k—1)--- w(N-1)

Suppose that the wide matrix in the right-hand side formed by the inputs has full
rank. Then, the impulse responses (gr—1, - - , g1, go) can be obtained by solving
the above equation by the least-squares method?. This indicates that under certain
assumptions, we can compute a minimal realization of an LTI system by using an
input-output data, without using impulse responses.

Suppose that the inputs and outputs

(u(0) u(l) -+ u(k+ N —2))
and

(y(0) y(1) -+ y(k+ N —2))

are given, where £ is strictly greater than n, the dimension of state vector. For these
data, we form block Hankel matrices

w(0) w(l) -+ w(N-1)
u(l) u(2) - u(N)

UO‘k—l — c kaXN

wlk — 1) ulk) - u(k+ N —2)

%For the exact computation of impulse responses from the input-output data, see (6.67) in
Section 6.6.
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and

Yojr—1 = : : . € RkPxN

y(k—1) y(k) - y(k+ N - 2)

where the indices O and £ — 1 denote the arguments of the upper-left and lower-left
element, respectively, and the number of columns of block Hankel matrices is usually
fixed as NV, which is sufficiently large.

We now derive matrix input-output equations, which play a fundamental role in
subspace identification. By the repeated use of (6.1), we get’

y(t) ¢ D u(t)
y(t+1) CA CB D u(t+1)
. = . z(t) + . .
y(t+k—1) C AR CcA*2B ... CB D] |lu(t+k—1)

For notational simplicity, we define

y(t)1 1 u(t)1

t u(t

Yi(t) = " + : ERY,  wy(t) = ( + ) € Rk™
y(t+k—1) ] wlt +k — 1)

and the block Toeplitz matrix
D
CB D
!pk — ] ' ' c Rkpx km
CA¥2B... CB D
Then we have

yk(t) = Okﬂj(t) + Wkuk(t), t=0,1,--- (6.21)

We see that in terms of u(t) and y(t), the block Hankel matrices U1 and
Yo|r—1 are expressed as

Uojr—1 = [ux(0) up(1) -+ up(N —1)]

and
Yore—1 = [Yx(0) yx(1) -+ ya(N —1)]
It thus follows from (6.21) that

3This type of equations have been employed in state space identification problems in ear-
lier papers [62, 155]; see also Problem 5.5.
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Yb|k,1 =0k Xo + q/kU0|k,1 (6.22)

where X = [2(0) z(1) --- 2(N — 1)] € R™*¥ is the initial state matrix.
Similarly, we define

Ukjak—1 = [ur(k) ur(k+1) --- up(N +k—1)]
Yippr—1 = [yr(k) yr(k+1) --- yx(N +k —1)]
Then, using (6.21) fort =k, k+ 1, --- ;k+ N — 1, we get
Yijpr—1 = Op Xy + O Upj2k—1 (6.23)

where X;, = [z(k) z(k+1) --- z(k+ N —1)] € R™*N,

Equations (6.22) and (6.23) are the matrix input-output equations with initial
states Xo and X, respectively. The block Hankel matrices Up|—1 and Yo, are
usually called the past inputs and outputs, respectively, whereas the block Hankel
matrices Uyzx—1 and Yz, are called the future inputs and outputs, respectively.

We assume that the following conditions are satisfied for the exogenous input
and the initial state matrix.

Assumption 6.1. A/) rank (X,) = n.
A2) rank (Ug|p—1) = km, where k > n.

A3) span(Xo) N span (Upjx—1) = {0}, where span (-) denotes the space
spanned by the row vectors of a matrix. O

Assumption 6.1 Al) implies that the state vector is sufficiently excited, or the
system is reachable. Indeed, if Al) is not satisfied, there exists a non-zero vector
n € R" such that n* Xy = 0, which implies that X, € R**¥ does not span the
n-dimensional state space. Assumption 6.1 A2) shows that the input sequence u €
R™ should satisfy the persistently exciting (PE) condition of order k. For the PE
condition, see Definition B.1 of Appendix B for more details. Also, A3) means that
the row vectors of X and Upx_; are linearly independent, or there is no linear
feedback from the states to the inputs. This implies that the input-output data are
obtained from an open-loop experiment.

Lemma 6.3. [118, 119] Suppose that Al) ~ A3) and rank(O) = n are satisfied.
Then, the following rank condition holds:

rank {U‘]'“ } =km+n (6.24)
0[k—1
Proof. [86] It follows from (6.22) that
|:U0|k1:| — |:Ik7n 0k7n><n:| U0|k71 (6 25)
Yojk—1 Y O Xo '

where k£ > n. From Assumption 6.1, we see that the two block matrices in the right-
hand side of the above equation have rank km + n. This proves (6.24). O
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Lemma 6.3 implies that for the LTI system (6.1), if we delete row vectors in
Yo x—1 that are dependent on the row vectors in Up|;_1, there remain exactly n inde-
pendent row vectors in Yy, where n is the dimension of the state space.

In the following, the matrix

k>n

Ugjp—
Wo\k—l — [ 0k 1]’

Yoik—1

is referred to as data matrix. In order to study the relation between the block Hankel
matrix Hy,; formed by the impulse responses and the data matrix Wy, defined
above, we begin with a simple example.

Example 6.3. Suppose that y(¢) = 0,¢ < 0. Letu = (0, 0, 0, 1, 0, 0, ---) be
the unit impulse at ¢ = 3. We apply the input u to an LTI system, and observe the
impulse response with three steps delay

Y= (07 07 07 90, 91, 92, 93, )

Let k = 4, N = 8. Then, we have

0001 0O0O0O
0010 0O0O0OO
0100 0O0O0O
Um} 1000 0000
6.26
[Yo3 000490 91929594 (6:26)
0 09091 9293 94 95

0 909192 93 94 95 9s
L90 91 92 93 94 95 g6 97 |

This data matrix has a particular block structure, in which the upper-right block is
a zero matrix, and the lower-right block is exactly the Hankel matrix Hy 4. Also, if

we post-multiply (6.26) by a nonsingular matrix } , where J, is a permutation

4
0 Iy
matrix with 1 along the principal anti-diagonal [see (2.39)], then the right-hand side

of (6.26) has the form I 0 , which is similar to the block matrix with the
!p4 04 64
upper-right block zero appearing in the right-hand side of (6.25). O

Data matrices formed by generic input-output data do not have a nice structure
like (6.26). However, by exploiting the linearity of the system, we can transform the
data matrices into block matrices with zeros in the upper-right block. This fact is
indeed guaranteed by the following lemma.

Lemma 6.4. [181] Suppose that the input-output data

Uojk—1

WO\k—l = |: :| 5 k>n (627)
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are given. Then, under the assumption of Lemma 6.3, any input-output pair

w )|
wo=| | wo=|"
u(k —1) gk —1)

of length k can be expressed as a linear combination of the column vectors of
Wolk—1- In other words, there exists a vector ¢ € RN such that

-l e

Proof. Post-multiplying (6.22) by a vector { € R yields
Yoik—1¢ = 0 XoC + ¥ Upr—1¢

Thus it should be noted that 1, (0) := Upr—1¢ and g (0) := Yg,_1¢ are an input-
output pair with the initial state vector Z(0) := Xo(. This is a version of the well-
known principle of superposition for an LTI system.

To prove the lemma, let (@(0), §x(0)) be an input-output pair. Then, it follows
from (6.21) that there exists an initial state Z(0) € R™ such that

7, (0) = 02(0) + 1, (0) (6.29)

Uojr—1
Xo
vector ( € RY such that

} € RFm+n)XN hag full row rank, so that there exists a

|:1~1k(0):| _ |:U0k1:|<
#(0) | Xo
Thus from (6.29) and (6.25), we have

|:7-'/k(0):| — |:Ikm Okmxn:| |:ﬁk(0):|

By assumption, {

9 (0) Y Oy z(0)
_ |:Ikm Ukan] |:U0k1:| = |:U0k1:|<
Y Oy Xo Yoik—1
as was to be proved. O

The above lemma ensures that any input-output pair can be generated by using a
sufficiently long input-output data, if the input has a certain PE condition.

Example 6.4. Consider a scalar system described by
y(t) = ay(t—1) +u(t), t=0,1,--+; y(-1)=0

Then, the output is expressed as
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y(t) = a'u(0) + a'tu(l) + - - + au(t — 1) + u(t),

6 Realization of Deterministic Systems

Suppose that we have the following set of input-output data.

N O U WNHE O

—_ e e = DN = S

—_

yo=1

y1=a+?2

ys =a’>+2a+1

y3=a’>+2a’+a—-1
y4:a4+2a3+a2—a—1

ys =a’ +2a* +a*—a®*—a+1

ye =a% +2a° +a* —a® —a’+a+1
yr=a"+2a%4+a®>—a*—ad’*+a’+a-1

t=0,1,-

Let £ = 3, N = 6. Then, the data matrix is given by

1 2 1 —-1-1 1
2 1-1 -1 1 1
[Uw] _|1-1-1 1 1-1 630)
Yoo Yo Y1 Y2 Y3 Ya Ys '
Y1 Y2 Ys Y4 Ys Ye
Y2 Y3 Ya  Ys Ye Y7

We observe that three vectors in the upper-left 3 x 3 block are linearly independent.
By applying the column operation using these three column vectors, we make the
upper-right 3 x 3 block a zero matrix. By this column operation, the lower-right
block is also affected by the column vectors in the lower-left block, so that

1 21 0 0 0
2 1-1 0 0 0
U0|2}' 1-1-1 0 0 0
= 6.31
[Y0|2 Yo Y1 Y2 Y5 Yy Vs (©31)
Y1 Y2 Y3 ayy ayy ays

Yo ys ya a’yh a*yh a*yl

In fact, by taking ¢ = (—2/3 4/3 —1 1 0 0)T € RC, it follows that

1 2 1 -1-1 1][-3 0
2 1-1 -1 1 1 g 0
1-1-1 1 1-1||-1| | o
Yo Y1 Y2 Y3 Y4 Ys 1| s
Y1 Y2 Y3 Y4 Ys Ys 0 ays
Yo Ys Y1 Y5 Yo Y7 0 a*yh

where ¥4 = a® + a® + a/3. We see that y} is the output at ¢ = 3 due to the input
u= (11 1/3 0), sothat (y5 ay} a®y}) is a zero-input response with the initial
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condition §(0) = 4. Similarly, we can show that y}, = a* + 2a® + 2a® + a and
yt = a® +2a* +a® + 2a/3, so that ¢/, and y}, are the outputs at t = 4 and t = 5 with
inputsu=(1 221 0)andu = (1 2 1 0 2/3 0), respectively. It should be noted
that these inputs are fictitious inputs, which are not actually fed into the system.

We can write the lower-right block of (6.31) as

1 c
a|[ys vy ysl= | CA | [ys vy ys] = Oslys vy s
a? CA?

Clearly, the image of the above matrix is equal to the image of the extended observ-
ability matrix O3 € R3*1 . Thus, we have C = 1, A = a. O

We need a column operation to make the upper-right block of the data matrix a
zero matrix as shown in (6.31). However, this is easily performed by means of the
LQ decomposition, which is the dual of the QR decomposition.

6.4 L.Q Decomposition

We usually consider rectangular data matrices with a large number of columns. Thus
if we apply the LQ decomposition to rectangular matrices, then we get block lower
triangular matrices with a zero block at the upper-right corner.

Let the LQ decomposition of a data matrix be given by

UOk—1:| B [LH 0 } {Qq
[Yoml T | Ly Ly | |QF (6.32)

where Ly € Rhm*km L, € Rbpxkm [,, € R**#? with L1y, Lo lower trian-
gular, and Q; € RV>*k™ (Q, € RV**P are orthogonal. The actual computation of
LQ decomposition is performed by taking the transpose of the QR decomposition of

the tall matrix
[U()T\kq YOT\kq] € RVxk(m+r)

A MATLAB® program for the LQ decomposition is displayed in Table 6.1.

Example 6.5. Let a = 0.9 in Example 6.4. Then, from (6.30) and (6.31), it follows
that

1 2 1 -1 -1 1
2 1 -1 -1 1 1
U] _ | 1 -1 -1 1 1 -1 6.33)
Yol 1 29 361 2249 1.0241 1.92169

2.9 3.61 2249 1.0241 1.92169 2.729521
3.61 2.249 1.0241 1.92169 2.729521 1.4565689

and
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Table 6.1. LQ decomposition

% Program

% LQ decomposition

function [L11,L21,L22]=Iq(U,Y)
km=size(U,1); kp=size(Y,1);
[Q,L]=ar([U;YT,0);

Q=Q’; L=L;

L11=L(1:km,1:km);
L21=L(km+1:km+kp,1:km);
L22=L(km+1:km+kp,km+1:km-+kp);

1 2 1 0 0 0
2 1 -1 0 0 0
!
Uo|2 _ 1 -1 -1 0 0 0 6.34)
Yoo 1 29 361 1.839 4.6341 4.17069 '
2.9 3.61 2.249 1.6551 4.17069 3.753621
3.61 2.249 1.0241 1.48959 3.753621 3.3782589
Also, the LQ decomposition of (6.33) gives
—3.0000 0
—1.3333 2.6874 0
I = 1.6667 1.1990 —1.3359 0 (6.35)

—3.0159 —0.7588 —1.3353 —4.5569
—4.0509 2.0045 —1.2017 —4.1012
—1.9792 3.0030 —2.4175 —3.6911

O OO O OO
O OO O OO

We see that in (6.34) and (6.35), multiplying the first row of the lower-right block
by 0.9 yields the second row, and multiplying the second row by 0.9 yields the third
row, so that the rank of these matrices is one, which is the same as the dimension of
the system treated in Example 6.4. O

From (6.32), we obtain

Ly 0] UOk—1:| .
[Lm L2J - [Yolkl [Q1 @] (6.36)

The following lemma provides a system theoretic meaning of the L-matrix in terms
of zero-input responses of the system.

Lemma 6.5. Under Assumption 6.1, each column of the L-matrix is an input-output
pair; in particular, each column of Lao contains a zero-input response of the system.
Moreover, we have rank(Las) = n, i.e. the dimension of the system.

Proof. Since ()1, ()2 are formed by IV-dimensional column vectors, it follows from
(6.28) of Lemma 6.4 that each column of L-matrix of (6.36) is an input-output pair.



6.5 MOESP Method 157

Since L15 = 0, we see that Loy consists of zero-input responses. Recall from (6.8)
and (6.21) that the zero-input response is expressed as yx(0) = Ox(0). We see that
the number of independent zero-input responses is n = dim z(0), so that we have
the desired result. O

The scenario of the realization procedure based on the LQ decomposition is to
compute the SVD of Ly in order to recover the information about the extended
observability matrix, and then to estimate the matrices A and C' by using the relation
of (6.12). On the other hand, the information about matrices B and D is included in
the matrices L1, and Ly; of (6.32). To retrieve this information, however, the matrix
input-output equation of (6.22) [and/or (6.23)] should be employed together with
L1 and Lo, as explained in the next section.

Thus, in the next section, we shall present a solution to Problem B, stated in Sec-
tion 6.1, based on a subspace identification method, called the MOESP method, in
which the LQ decomposition technique and the SVD are employed. Another solution
to Problem B is provided by the N4SID subspace identification method, which will
be discussed in Section 6.6.

6.5 MOESP Method

In this section, we discuss the basic subspace identification method called MOESP
method* due to Verhaegen and Dewilde [172, 173]. In the following, the orthogonal
projection is expressed as E{- | -}.

We see from (6.32) that

Uojp—1 = L1 QT (6.37a)
Yoiko1 = La1Q + L22Qy (6.37b)

where L;; € Rkm>xkm 1., ¢ RkPXkP are lower triangular, and @; € RN xkm
Q> € RVXFP gre orthogonal. Under Assumption 6.1, we see that L1 is nonsingular,
so that err = L1_11 Ug|k—1- Thus, it follows that (6.37b) is written as

Yoik—1 = La1 L' Ugjr—1 + L22Q3

Since @)1, ()= are orthogonal, the first term in the right-hand side of the above
equation is spanned by the row vectors in Up|,_1, and the second term is orthogonal
to it. Hence, the orthogonal projection of the row space of Yy, 1 onto the row space
of Up|j—1 is given by

E{Yo\kq | Ugjp—1} = Ly QT = L21L1_11U0\k71

Also, the orthogonal projection of the row space of Yy,_; onto the complement
U(ﬁk_1 of the row space of Ug;_; is given by

“MOESP=Multivariable Output Error State Space
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£ 1 T
E{Yoik—1 | Uglp 1} = L22Q;

In summary, the right-hand side of Yy, _; in (6.37b) is the orthogonal sum decom-
position of the output matrix Yy z_1 onto the row space of the input matrix Ug|x_1
and its complement.

Also, it follows from (6.22) and (6.37b) that

01 X0 + ¥ L11Q] = L1 QT + LQy (6.38)

where it should be noted that though the right-hand side is an orthogonal sum, the

left-hand side is a direct sum, so that two quantities therein are not necessarily or-

thogonal. This implies that Oy X # L22Q;F and WkLHQ;F #+ LngrlF.
Post-multiplying (6.38) by - yields

OkXOQQ = Lo»

where QT Q2 = 0, Q5 Q2 = I, are used. Under the assumptions of Lemma 6.3, the
product Xo@Q- has full row rank n and rank(Q) = n, which is equal to rank(L2»).
Thus we can obtain the image of the extended observability matrix O and hence the
dimension n from the SVD of Loy € RFPXkp

Let the SVD of Ls5 be given by

Lmﬂw%ﬂ&ﬂf?

00 Vg} =U 0V (6.39)
where U; € R¥*>" and U, € R¥**(kP—n) Then, we have
0kXoQ2 = U1 21V
so that we define the extended observability matrix as
Op = Uy 5172 (6.40)
and n = dim X;. The matrix C' is readily given by
C=0r1:p,1:n) (6.41)
and A is obtained by solving the linear equation (see Lemma 6.1)
Or(1:p(k—1),1:n)A=0k(p+1:kp1:n) (6.42)

Now we consider the estimation of matrices B and D. Since U2T Loy = 0 and
UL O = 0, pre-multiplying (6.38) by U € R*P—7)xkp yields

U L1 QT = Uy L1 Q]

Further post-multiplying this equation by ) yields
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)
o
o

.| cB D 0 . )
U : .| =W Ll (6.43)

CA* 2B CA*¥3B--- D

This is a linear equation with respect to B and D, so that we can use the least-squares
method to find them. In fact, define

U; = [Ll LQ Lk], U;LglLl_ll = [Ml MQ Mk]
where £; € R*¥P=m)%p =1 ... kand M; € RkP=7)*m Thus, from (6.43),

L1D+ LyCB+ -+ Ly 1CA* 3B+ L,CA* 2B =M,
LoD + L3CB + -+ LCAF 2B = M,

Lp_1D+ L,CB =My

LD =My
Defining £; = [L; -+ L] € Rkp=n)x(kt1=ip j — 9 ... 'k we get the follow-
ing overdetermined linear equations:
Ly ézokq My
Lg Lgokfg MQ
: : = : 6.44
e -
Lk,1 Lkol Mkfl
Lk 0 Mk

where the block coefficient matrix in the left-hand side is k(kp — n) x (p + n) -
dimensional. To obtain a unique least-squares solution (D, B) of (6.44), the block
matrix has full column rank, so that k(kp — n) > (p + n) should be satisfied. It can
be shown that if £ > n, this condition is satisfied.

Summarizing the above, we can provide a subspace identification method that
solves Problem B. Suppose that we have the input and output data Uy, and Yg 1.
Then, we have the following lemma.

Lemma 6.6. (MOESP algorithm)
Step 1: Compute the LQ decomposition of (6.32).

Step 2: Compute the SVD of (6.39), and let n .= dim X1, and define the extended
observability matrix as

Op = U, 3172
Step 3: Obtain C and A from (6.41) and (6.42), respectively.
Step 4: Solve (6.44) by the least-squares method to estimate B and D. O
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In [172,173], this algorithm is called the ordinary MOESP, and a program of the
above algorithm is given in Table D.2 of Appendix D.

Example 6.6. Consider a simple 2nd-order system with

0.6 0.4 0
A‘[—0.4 0.6}’ B—M, C=[1 05, D=0

The transfer function is then given by

05Z+01 - b022 +b12+b2

G(z) = =
(2) 22 —1.22+0.52 22 4+a1z+ as

We have performed simulation studies by using 100 sets of input-output data with the
length N = 100, where the input is a white noise with mean zero and unit variance,
and then a white noise v is added to the output y so that the S/N ratio in the output
becomes approximately o2 /o2 ~ 100.

By using the MOESP algorithm of Lemma 6.6 with £ = 8, we have identified
the dimension n and parameters of the transfer function. The means and standard
deviations of the first five singular values of Lo, are displayed in Table 6.2, where
s.d. denotes the standard deviation.

Table 6.2. Singular values of Lo

o1 [op) o3 g4 g5
mean 15.4313 5.7956 1.1010 1.0354 0.9664
s.d. 1.8690 0.5360 0.1004 0.0887 0.0790

The singular values o;, ¢ = 3, 4, - - - are relatively small compared with the first
two o1 and o2, so that the dimension is correctly identified as n = 2. It should be
noted that for the noise free case (v = 0), we observed that o;, i = 3,4, --- are

nearly zero (order of 10~!4). Also, the identification result of the transfer function

Table 6.3. Simulation result

ax as bo b b2
True —1.2000 0.5200 0.0000 0.5000 0.1000
mean —1.1999 0.5204 —-0.0016 0.5019 0.1002
s.d. 0.0147 0.0110 0.0102 0.0156 0.0185

is displayed in Table 6.3. Thus we see that for this simple system, the identification
result is quite satisfactory. O
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6.6 N4SID Method

In this section, we show another method of solving Problem B. This is fulfilled by in-
troducing the basic idea of the subspace identification method called N4SID method®
developed by Van Overschee and De Moor [164,165]. Prior to describing the method,
we briefly review the oblique projection in subspaces (see Section 2.5).

Let A, B, C be the row spaces generated by the row vectors of matrices A, B, C,
respectively. We assume that B N € = {0}, which corresponds to Condition A3) of
Assumption 6.1. For a € A, we have the following decomposition

E{a|BVe€} = Eje{a| B} + Ejs{a| €} (6.45)

where the left-hand side is the orthogonal projection, while the right-hand side is a
direct sum decomposition; Ejec{a | B} is the oblique projection of a onto B along

C, and E||B{a | C} is the oblique projection of a onto € along B.

Let k > n be the present time. Define U, := Up|p_1, Yy := Yojp—1, Xp 1= Xo
and Uy := Upjag—1, Yy := Yyjop—1, Xy := Xj, where the subscripts p and f denote
the past and future, respectively. In order to explain the N4SID method, we recall
two matrix input-output equations derived in Section 6.3, i.e.,

Y, = 0: X, + ¥, U, (6.46)
Yy =0, Xy +9,Uy (6.47)

Further, define W, W; € RE(M+P)XN a5

W .= Up | _ | Uolr—1 W, o Us | _ | Uklze—1
Py, Yok 1 Ty Yok 1

The following lemma explains a role of the state vector for an LTI system.

Lemma 6.7. [41,118] Suppose that rank(Oy) = rank(Cy) = n with k > n. Under
Al) ~A3) of Assumption 6.1 with k replaced by 2k, the following relation holds.

span (X y) = span (W,) Nspan (W) (6.48)

Proof. First we show that rank(X ;) = n. It follows from (6.1a) that

u(i)
u(i+1)
z(k+1i) = A*z(i) + [A*'B A* B ... B] .
u(i +k—1)
so that _
X; = AKX, + G U, (6.49)

SN4SID= Numerical Algorithms for Subspace State Space System Identification.



162 6 Realization of Deterministic Systems

where €, = [A¥='B A¥=2B ... B]is the reversed extended reachability matrix.
Since rank(€,U,) = n and span(X,) N span(U,) = {0} by Assumption 6.1, we
see from (6.49) that rank(X ;) > n. But, by definition, rank(X ) < n, so that we
have rank(X ) = n. Moreover, from (6.46) and (6.47),

X, = 0lY, — 0l U, € span (W,) (6.50)

X; = 0lY; — 0lwU; € span (Wy) (6.51)
where OL is the pseudo-inverse of Oy. Thus, from (6.50) and (6.49), span (Xy) C
span (). It therefore follows from (6.51) that

span (Xy) C span (W) N span (Wy)

We show that the dimension of the space in the right-hand side of the above
relation is equal to n. From Lemma 6.3, we have dim(W,,) = dim(Wy) = km +n
and dim (W, V Wy) = 2km + n, where dim( - ) denotes the dimension of the row
space. On the other hand, for dimensions of subspaces, the following identity holds:

dim(W, N Wy) = dim(W,) + dim(W;) — dim(W, v Wy)
Thus we have dim(W,, N W) = n. This completes the proof. O

Since W, and Wy are the past and future data matrices, respectively, Lemma 6.7
means that the state vector X is a basis of the intersection of the past and future
subspaces. Hence, we observe that the state vector plays a role of memory for ex-
changing information between the past and the future, where the state vector X ; can

be computed by the SVD of {S//p] € R (P+m)x N see [118].
f

Consider the LQ decomposition

Uy Ly, 0 0 0 Q7
U, Lot Lyy 0 0 T

= 6.52
Y, L3y L3y L3z O T (6.52)
Y; Ly Lyo Lag Lyg | | QF

where Ly1, Loy € RE™>km [0 L,4 € REPXFP are lower triangular, and where
Q1,Q2 € RV*km Q3.Q4 € RVXFP are orthogonal. Then, we have the following
theorem, which is an extended version of Lemma 6.5.

Theorem 6.2. Suppose that Al) ~ A3) of Assumption 6.1 hold with k replaced by
2k, so that the PE condition of order 2k holds. Then, for the LQ decomposition of
(6.52), we have

rank(L4o) =n, rank(Ls3)=n, rank [233} =n, rtank[Lsy L] =n
43

Moreover, it follows that Lyy = 0 and hence rank(Lss) = n.
Proof. Recall from Lemma 6.5 that each column vector in the L-matrix of (6.52)
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is an input-output pair, though the blocks Uy and U, are interchanged. Also, we see
that three block matrices L1, L13, L14 corresponding to future inputs are zero. This
implies that each column of the last three block columns of the L-matrix is an input-

. . . L
output pair with zero future inputs. In particular, columns of L4s, Lys, [ L33 } , Ly,
43

[Lao L43] consist of zero-input responses. Since the number of independent zero-
input responses equals the dimension of the system, we have all rank conditions
stated in this theorem. Also, we see that L4y = 0, since past inputs and outputs
together with the future inputs generating it are zero (L14 = 0, L2y = 0, Lgq = 0).

From (6.24) with k := 2k, the rank of the left-hand side of (6.52) is 2km + n, so
is the rank of the L-matrix. Since rank(Lq1) = rank(Las) = km and Lyy = 0, we
see that rank(L33) = n. This completes the proof. O

We are now in a position to present a theorem that provides a basis of the N4SID
method.

< span{W,}
€= 01Xy

Figure 6.2. Oblique projection

Theorem 6.3. [165] Suppose that Al) ~ A3) of Assumption 6.1 hold with k re-
placed by 2k. Let the oblique projection of Yy onto W, along Uy be given by

€= By, Vs | Wy} (6.53)
(see Figure 6.2). Also, let the SVD of € be given by
¢=1[Uy U] H; 8} [Kﬂ = U2 V" (6.54)
Then, we have the following results.
n = dim X (6.55)
£ =0,X; € RPN (6.56)
Op = UL SIPT e RFP*™ T #0 (6.57)

X, =T '8y e RN (6.58)
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Proof. Since L44 = 0, the future Y} is completely determined by the past W, and
the future inputs Uy. Thus, Yy = Y} in Figure 6.2
For convenience, we rewrite (6.52) as

Uy Rii 00 Q?
Wy | = | Rt Raa 0| | QF (6.59)
Yy R31 R32 0] | QF

L3y L33
less than k(m + p), so that Rao is rank deficient. Also, it follows from rank(Lss) =
km and the third condition in Theorem 6.2 that (see Problem 6.6)

From Theorem 6.2, we see that rank(R»2) = rank [ ] = km + n, which is

Ker(R32) C Ker(R32) (6.60)
Now from (6.59), we have
RosQ3 = W, — Ro1 QY
Thus, there exists a = € RE(PTm) XN gych that
Q3 = RL,(Wp = RuQY) + [Ti(pm) — BRI, R2] 3 (6.61)

where R;Q is the pseudo-inverse defined in Lemma 2.10; see also Lemma 2.11.
From the third relation of (6.59), we have Y; = R31Q] + R32Q3, so that by
using (6.61) and QT = R Uy,

Y; = (Rs1 — R3a R}y Roy )R U + Raa RI, W,
+ Ry [Tx(pgm) — RY, R ] Z (6.62)

But, from (6.60), Rsa [Ii(psm) — RyyRoz] = 0, since I := Iy (i m) — Ry Ron is
the orthogonal projection onto Ker(Rs2). Thus, (6.62) reduces to

Vs = (Rs1 — Rga R, Ro1 )R Uy + Raa R, W, (6.63)

where span(Uy) N span(W,) = {0} from A3) of Assumption 6.1. It thus follows
that the right-hand side of (6.63) is a direct sum of the oblique projections of Y onto
span(Uy) along span(W,,) and of Y} onto span(1¥,,) along span(Uy).

On the other hand, from (6.47),

Y, =0,U; + 01Xy (6.64)

Again, from A3) of Assumption 6.1, span(Uy) N span(Xy) = {0}, so that the right-
hand side of (6.64) is the direct sum of the oblique projections of Y onto span(Uy)

°N9te that if the output y is disturbed by a noise, then we have Ls4 # 0, implying that
Y; #Y;.
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along span(X ) and of Y onto span(X ) along span(Uy). Thus, comparing (6.63)
and (6.64), we have the desired result, and hence

€= Ey {Y; | Wy} = Rs2 R, W, = 0. X; (6.65)
This proves (6.56). Equations (6.55), (6.57) and (6.58) are obvious from (6.54). O

It follows from Theorem 6.3 that the estimates of A and C' can be obtained from
the extended observability matrix of (6.57). Also, we see from (6.63) and (6.64) that

W, = (R3; — Raa R}, Roy ) RT; (6.66)
holds. Hence, by the definition of ¥,
CB D -0 ; )
' .. .| = (Rs1 — Re>R}, Ron) Ry, (6.67)
CA*2B CA*3B ... D

which is similar to the expression (6.43). Thus we can apply the same method used
in the MOESP algorithm of Lemma 6.6 to compute the estimates of B and D.

Van Overschee and De Moor [165] have developed a subspace method of iden-
tifying state space models by using the state vector given by (6.58). In fact, from
(6.58), we have the estimate of the state vector

Xy =[z(k) 2(k+1) - z(k+N—-2) z(k+ N —1)] (6.68)

We define the following matrices with N — 1 columns as

Xy :=[z(k+1) -+ z(k+N-1)] (6.69a)
Xy o= [z(k) - z(k+ N —2)] (6.69b)
U, = [u(k) -~ u(k+ N —2)] (6.69¢)
Vi = [y(k) -~ y(k+ N —2)] (6.69d)
Then, it follows that ~ ~
A REHIC N

This is a system of linear equations for the system matrices, so that they can be
estimated by applying the least-squares method:

BRI EAIEAN)

Summarizing the above, we have the following lemma.

T
Yk
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Lemma 6.8. (N4SID algorithm)

Step 1: Compute & by using (6.65) and the LQ decomposition of (6.59).
B Step 2: Compute the state vector Xy, from (6.58), and define Xk+1, Xy, Yk|k,
Ui r as in (6.69).

Step 3: Compute the matrices A, B, C, D by solving the regression equation
(6.70) by using the least-squares technique. O

Remark 6.1. This is a slightly modified version of Algorithm 1 in Chapter 3 of [165].
The LQ decomposition of (6.52) has been employed by Verhaegen [171] to develop
the PO-MOESP algorithm. Here we have used it to compute the oblique projections.
The LQ decomposition is frequently used in Chapters 9 and 10 in order to compute
orthogonal and oblique projections. O

6.7 SVD and Additive Noises

Up to now, we have presented deterministic realization results under the assumption
that complete noise-free input-output data are available; but it is well known that real
data are corrupted by noises. Thus, in this section, we consider the SVD of a data
matrix corrupted by a uniform white noise. We show that the left singular vectors of
a wide rectangular matrix are not very sensitive to additive white noise.

Consider a real rectangular matrix X € RM*YN with M <« N. Letrank(X) =
r < M, and let the SVD of X/\/N be given by

- T _ 0] [V _ T
\/NX—UEV =[Us U,] { 0 0} [VE} =U,X,V, (6.71)
where Xy = diag(oy, -+, 0,), and where
01202220, >0p41=--=0py =0

The matrices U € RM*M '/ ¢ RN*N are orthogonal, and U, := U(1: M,1:r),
Vs:=V({:N,1:r).From (6.71),

1 T T 252 0 Mx M
NXX U=U0xXY" =U 0 0 eR (6.72)
and hence,
NXXTui:U;'Zuiv 2'21,"',7“

We see that the left singular vectors u; of X/ VN are the eigenvectors of X X T /N,
so that we have
ol = N(XXT/N),  i=1,--,r

We consider the effect of white noise on the SVD of X. Let X be perturbed by
white noise =. Then, the observed data Y is expressed as
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Y=X+2Z (6.73)

where the element &;; of = is white noise with mean O and variance Jg. Thus, we
have 1 1
lim _EYYT)= lim NXXT +0¢ly

N—oco N —oo

Hence, from (6.72),YY'T /N is approximated as

1 1
NIV e CXXT 4oy
2
:U([Z(;s SDUT+U§IM (6.74)

where N is sufficiently large and where U (o In)U"T = UM (0210)U = 02l is
used. Defining S? = X2 + a?IT, (6.74) becomes

1 T Sz 0 Ul _ et
NYY ~ [Us U, [ 0 UEIM—T} [UE} =US“U (6.75)
where S = diag(s1, -+ ,sm), s; > 0 with
2 2 =1 .-
s = \/"”L”i’ v=hT (6.76)
o, i=r+1,--, M

as shown in Figure 6.3. It should be noted that the right-hand side of (6.75) is the
eigenvalue decomposition of the sample covariance matrix of Y.

Si

Index 4

Figure 6.3. Singular values of Y/v/N and X/v/N

Lemma 6.9. Suppose that the variance Ug of the white noise &;; is relatively small,

and that N is sufficiently large. Then, for the SVDs of X /v/N and Y/ N, the fol-
lowing (i) ~ (iii) hold.
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(i) The singular values of Y/\/N are given by (s1, s2, -+ , sy), where
8§12 8222 8.> 841 =+ =SM = 0¢

Thus, the M — r minimum singular values of Y/\/N are nearly equal to o¢.
(ii) The eigenvalues of X X T /N are obtained by 0? = s? ag, 1=1,- 1

1
(iii) The left singular vectors of Y/\/N are close to those of X/\/N. Hence, we
know the left singular vectors uy, --- , Uy ofX/\/N from the left singular vec-
tors corresponding to r singular values sy > so > --- > s, of Y/\/N. This
fact implies that information about X can be extracted from the noise corrupted
observation'Y by using the SVD.

Proof. See [40,162]. O

Remark 6.2. We see from Lemma 6.9 that the information about X is contained in
the r left singular vectors corresponding to the r largest singular values of Y, and no
information is in the singular vectors corresponding to smaller singular values. Hence
the subspace spanned by the left singular vectors Us = [uq, - - - , u,] corresponding
to the first r singular values is called the signal subspace. Also, the subspace spanned
by U, = [try1, -+, up] is called the noise subspace associated with the space
spanned by Y. It should be noted here that noise subspaces are no less important
than signal subspaces in applications. In fact, noise subspaces are successfully used
for solving blind identification problems [156, 162]. O

We give a numerical example which is related to a frequency estimation problem
based on noisy data. This clearly shows the meaning of Lemma 6.9.

Example 6.7. Consider a simple sinusoidal model
x(t) = a1 sin(wit + 1) + as sin(wat + @2)

where a; = 10, as = 5 denote the amplitudes, w; = 0.247, wy = 0.267 two
adjacent angular frequencies, 1, 2 random variables with uniform distribution on
the interval (—m, 7). We assume that the observation is given by

y(t) = 2(t) +e(?)

where e is a Gaussian white noise with mean zero and variance o2.

For random initial phases ¢1, (2, and a Gaussian white noise e, we generated
the data y(t), t = 1, --- ,1024. Assuming that £ = 16, we formed X and Y, and
computed the singular values o; and s; of X/ VN and Y/ VN, respectively; the
results are shown in Table 6.4.

We observe that the singular values s;, 1 > 5 of Y/ VN decrease very slowly as
the index i. In this case, it is not difficult to determine rank(X/v/N) = 4 based on
the distribution of singular values of Y/ V/N. If the noise variance of e increases, the
decision becomes difficult. Also, if the difference |w; — w| of the two angular fre-
quencies get larger, the singular values s3, s4 become larger, while s;, ¢ > 5 remain
almost the same. Thus, if the difference of two angular frequencies is expanded, the
rank determination of X/+/N becomes easier. O
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Table 6.4. Singular values of X//N and Y/v/ N

] 1 2 3 4 5 6 16
o; 22.6323 22.0416 2.5283 2.5128 0 0 0
si 22,6903 22.1013 2.7308 2.7276 1.1132 1.0769 --- 0.9046

6.8 Notes and References

o The germ of realization theory is found in the papers by Gilbert [56] and Kalman
[82]. Then Ho and Kalman [72] has first solved the deterministic realization prob-
lem and derived a method of constructing a discrete-time state space model based
on a given impulse response sequence; see also Kalman, Falb and Arbib [85].
Zeiger and McEwen [184] have further studied this algorithm based on the SVD
to make its numerical implementation easier. Other references cited in this chap-
ter are review articles [162,175] and books [59, 147,157].

e Two realization problems are stated in Section 6.1; one is the classical realization
problem to recover state space models from given impulse responses, and the
other is the deterministic identification problem to construct state space models
from observed input and output data. The classical solution based on the SVD of
the Hankel matrix formed by the given impulse responses is described in Section
6.2. A program of Ho-Kalman algorithm of Lemma 6.1 is provided in Table D.1
of Appendix D.

e A crucial problem of the realization method based on the infinite Hankel matrix
is that it is necessary to assume that the Hankel matrix has finite rank a priori.
In fact, it is impossible to determine the rank of infinite dimensional matrix in
finite steps, and also it is not practical to assume that infinite impulse responses
are available. The realization problem based on finite impulse response matrices
is related to the partial realization problem; see Theorem 3.14.

e In Section 6.3, we have defined the data matrix generated by the input-output
observations, and basic assumptions for the inputs and system are introduced. It
is shown by using some examples that information about the image of extended
observability matrix can be retrieved from the data matrix [162]. Lemma 6.3
is due to Moonen et al. [118, 119], but essentially the same result is proved in
Gopinath [62], of which relation to subspace methods has been explored in [177].
The proof of Lemma 6.3 is based on the author’s review paper [86], and Lemma
6.4 is adapted from the technical report [181].

o In Section 6.4, we have shown that the image of extended observability matrix
can be extracted by using the LQ decomposition of the data matrix, followed by
the SVD. Lemma 6.5 provides a system theoretic interpretation of the L-matrix,
each column of which is an input-output pair of the system.

o Two subspace identification methods, the MOESP method [172,173] and N4SID
method [164, 165], are introduced in Sections 6.5 and 6.6, respectively. A proof
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of the N4SID method is based on Lemma 6.5 and a new Theorem 6.2. Some
numerical results using the MOESP method are also included.

e In Section 6.7, based on [40, 150, 162], we considered the SVD of wide rectan-
gular matrices and the influence of white noise on the SVD, and defined signal
and noise subspaces. It is shown that, since the SVD is robust to a white noise,
the column space of unknown signal is recovered from the column space of noise
corrupted observed signal. Lemma 6.9 gives a basis of MUSIC method; for more
details, see [150, 162].

6.9 Problems

6.1 Find the realizations of the following sequences.
(a) Natural numbers: (0, 1,2, ---)
(b) A periodic signal: (0, 1,0, -1,0,0,1,0, —-1,0,0 ---)

6.2 Compute the reachability and observability Gramians for (A, B, C') obtained
by the algorithm of Lemma 6.1 under the conditions of Lemma 6.2.

6.3 Suppose that A € RP*N B € RI*N | where p, ¢ < N. Let the orthogonal

projection of the row vectors of A onto the space spanned by the row vectors of
B be defined by E{A | B}. Prove the following.

E{A| B} = AB"(BB")'B
If B has full row rank, the pseudo-inverse is replaced by the inverse.
6.4 Let A and B be defined in Problem 6.3. Consider the LQ decomposition of

(6.32):
Bl _ L O Q1
M - {Lm Lm] [Qﬂ
Suppose that B has full row rank. Show that the orthogonal projection is given
by
E{A| B} = Ls1Qf = Ly L' B = A(Q:QY)
Let B+ be the orthogonal complement of the space spanned by the row vec-

tors of B. Then, the orthogonal projection of the row vectors of A onto B~ is
expressed as

E{A| B'} = L»Q3 = A(Q2Q7)
6.5 Suppose that A € RP*N B € RI*N € € RN where p, q, 7 < N. Suppose
that B and C have row full rank, and span{B} N span{C} = {0}. (Note that

this condition corresponds to A3) in Assumption 6.1.) Then, £ c{A | B}, the
oblique projection of the row vectors of A onto B along C, is expressed as

BB" BCT}_l m

Bio(A| )= A8" <" | g gor | |

6.6 Prove (6.60). (Hint: Use Lemmas 6.4 and 6.5.)
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Stochastic Realization Theory (1)

Stochastic realization theory provides a method of constructing Markov models that
simulate a stationary stochastic process with a prescribed covariance matrix, and
serves as a basis for the subspace identification methods. In this chapter, we present
a method of stochastic realization by using the deterministic realization theory and
a linear matrix inequality (LMI) satisfied by the state covariance matrix. We show
that all solutions to the stochastic realization problem are derived from solutions
of the LMI. Using the approach due to Faurre [45-47], we show that the positive
realness of covariance matrices and the existence of Markov models are equivalent,
and then derive matrix Riccati equations that compute the boundary solutions of the
LMI. Moreover, we discuss results for strictly positive real conditions and present a
stochastic realization algorithm based on a finite covariance data.

7.1 Preliminaries

Consider a second-order vector stationary process y € RP with zero mean and co-
variance matrices

A(l) = E{y(t+DyT (1)}, =0, +1,--- (7.1)

where the covariance matrices satisfy the condition

> 4] < o (7.2)

l=—oc0

It therefore follows that the spectral density matrix of y is given by

&(z) = Z Az (p X p matrix) (7.3)

l=—0c0

In the following, we assume that y is regular and of full rank, in the sense that the
spectral density matrix ¢(z) has full rank [68, 138].
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The stochastic realization problem is to find all Markov models whose outputs
simulate given covariance data of (7.1), or spectral density matrix of (7.3). In this
chapter, we assume that an infinite data {y(t), t = 0, £1,---}, or a complete se-
quence of covariances {/A(l)}, is available, so that here we develop a theoretical
foundation for the existence of stochastic realizations, thereby leaving a more real-
istic problem of identifying state space models based on finite input-output data for
later chapters.

Let ¢ be the present time. Let the stacked infinite dimensional vectors of the future
and past be given by'

Then, the covariance matrix of the future and past is defined by

A(1) A(2) A3) -
A(2) A(3) A(4) ---
H=E{ft)p" (1)} = | A(3) A(4) A(5) --- (7.4)

and the auto-covariance matrices of the future and the past are respectively given by

A(0) AT(1) AT(2) ---
AT(1

- A1) A(0) )
Ty = E{f(O)f (O} = | A(2) A1) AQ0) --- (7.5)
and
A0) A1) AQ2) -
AT(1) A(0) A(1)---
T_ = B{p(p" ()} = | AT(2) AT(1) A(0) - - (7.6)

where H is an infinite dimensional block Hankel matrix, and 7Ty are infinite dimen-
sional block Toeplitz matrices.

As in the deterministic case, it is assumed that rank(H) = n < oo. Then, from
the deterministic realization theory described in Section 6.2, there exists a minimal
realization (A4, C, C, A(0)) satisfying

A(0), 1=0
A(l) = B (1.7
CA-ICT,  1=1,2,---

!"Though the present time ¢ is included in the future, we could include it in the past as well.
Then, by definition, we obtain a model without a noise term in the output equation [2].
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where A € R**™ and C, C € RP*™ are constant matrices. It should be noted from
(7.2) and (7.7) that A is stable. Thus, the deterministic state space realization
A ct
©=¢ o)
is observable and reachable, and that the impulse response matrices are given by
{A(#),t = 0,1, ---}. In the following, we say that (4, C, C'T) is minimal, if

(C, A) is observable and (4, CT) is reachable.
Define the infinite dimensional observability and reachability matrices as

C
CA - .
0= . e=[CT ACT ACT

Then, we see from (7.7) that the block Hankel matrix of (7.4) has a factorization
(7.8)

H=0C

This is exactly the same factorization we have seen for the deterministic factorization
(7.9)

in Section 6.2; see Theorem 6.1.

It can be shown from (7.7) that
A(l) = CAICT1(1 = 1) + A(0)60 + C(AT) 1T 1(—1 - 1)

where
l=0,1,---
ll — ) )
© {0, l=-1,-2, -

Hence, from (7.3), the spectral density matrix is expressed as
-1
C_r(AT)—l—l CTZ—Z

(oo

B(z)=> CAT'CTz7+ A(0) +
l

=1

CV(AT)lflcTZl

M

1

~

=> CcATNC T+ A(0) +
=1
=C(zl—A)71CT + ;A(O) +C(z"tr—ANH et + ;A(O) (7.10)

If we define 1
Z(z) = C(zI — A)7ICT + 5 A(0)

then the spectral density matrix satisfies
B(2)=Z(z)+ 2% (=Y

This is a well-known additive decomposition of the spectral density matrix.
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Let p := p(A), the spectral radius. Since A is stable, we get 0 < p < 1. Hence
the right-hand side of (7.10) is absolutely convergent for p < |z| < p~!, implying
that the spectral density matrix is analytic in the annular domain p < |z] < p~!
that includes the unit circle (|z| = 1) (see Example 4.12). Let $(w) := &(2)|.—ciw -
Then, we have

b(w) = Z() + Z (e )
= 7))+ ZM(e) >0, —m<w<w (7.13)

For scalar systems, this is equivalently written as ReZ(e/*) > 0, where Qe denotes
the real part.

Definition 7.1. (Positive real matrix) A square matrix Z(z) is positive real if the
conditions (i) and (ii) are satisfied:

(i) Z(z) is analytic in |z| > 1.

(ii) Z(z) satisfies (7.13).
If, together with item (i), a stronger condition
(ii’) Z(e3*)+ Z1(e’*) >0, —-m<w<m

holds, then Z(z) is called strictly positive real. In this case, it follows that ®(w) > 0
for —m < w < 7, and such P(z) is called coercive. O

7.2 Stochastic Realization Problem

In this section we introduce a forward Markov model for a stationary stochastic pro-
cess, and define the stochastic realization problem due to Faurre [45].
Consider a state space model of the form

z(t +1) = Aox(t) + w(t) (7.14a)
y(t) = Cox(t) + v(t) (7.14b)

where y € RP is the output vector, z € R™ the state vector, and where w € R” and
v € RP are white noises with mean zero and covariance matrices

s{[zg]w o)< [$3]a o

It is assumed that A is stable, (Cy, Ag) is observable, and (A4g, Q'/?) is reachable.
In this case, the model of (7.14) is called a stationary Markov model as discussed in
Section 4.7 (see Figure 7.1).

Let IT = E{z(t)z" (¢)}. Then, we have

II = ZAQAT
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s

Figure 7.1. Markov model

and hence [T satisfies the Lyapunov equation (see Section 4.7)
IT = AJITAY +Q (7.16)
From Lemma 4.10, the covariance matrix of & satisfies
Aze(l) = {Aéﬂ’ =01 (7.17)
mAahH- l=-1,-2, .-
Moreover, from Lemma 4.11, the covariance matrix of y is given by
CoAy ' (AoIICT +5), 1=1,2,-
A(l) = ColICY + R, l= (7.18)
AT (=), =1, -2, ...

Thus, comparing (7.7) and (7.18), we conclude that

Ag=A (7.19a)

Co=C (7.19b)
ApllCy +S=C" (7.19¢)
CoIlICY + R = A(0) (7.19d)

It may be noted that A, C, C! in the right-hand side of (7.19) can respectively be
replaced by T Y AT, CT, T~'C" for an arbitrary nonsingular matrix T'; but for
simplicity, it is assumed that T' = I,,.

Since A, C, C in (7.19) are given by the factorization (7.7), they are regarded as
given data. Recall from Example 4.11 that these matrices A, C, C' are expressed as

A= E{z(t+ 2" ()} T~
C = E{y(t)z" ()} [T~ (7.20)
C=E{y)z" (t+1)}
It follows from (7.16) and (7.19) that
II — AITAY = Q (7.21a)
Ct'—Anc*=s (7.21b)
A0)-=CIICT =R (7.21¢)
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where

[’591‘2} >0, I >0 (7.22)
For given data (A, C, C, A(0)), the stochastic realization problem considered
by Faurre [46,47] is to find four covariance matrices (II, @, R, S) satisfying (7.21)
and (7.22). This problem can be solved by using the techniques of linear matrix
inequality (LMI) and spectral factorization as shown in Section 7.3.
From Lemma 4.12, recall that a backward Markov model for a stationary process
is given by the following lemma .

Lemma 7.1. Define zy(t—1) = I x(t) with I = IT~". Then, the backward Markov
model is given by

xp(t — 1) = ATz (t) + wy(2) (7.23a)

y(t) = Czp(t) + vp(2) (7.23b)

where A and C, called the backward output matrix, are given by (7.20), and where
wy, and vy are zero mean white noises with covariance matrices

p{ [0 Wi wen = | &) (7.24)

Moreover, we have cov{xy(t)} = II and
Q=1I-A"1A, S§=C"-AYIIC*, R=A(0)-CIIC* (7.25)
Proof. See the proof of Lemma 4.12. O

We see that the forward Markov model is characterized by (II, A, C,C, A(0)),
whereas the backward model is characterized by (11, A”, C, C, A(0)). Thus there
exists a one-to-one correspondence between the forward and backward models of the
form

I 10" A AT, ¢c«C Q& Q S+ S Re R

This fact is employed to prove the boundedness of the solution set of the ARE satis-
fied by II of Theorem 7.4 (see Section 7.4).

7.3 Solution of Stochastic Realization Problem

Theory of stochastic realization provides a technique of computing all the Markov
models that generate a stationary stochastic process with a prescribed covariance
matrix. Besides, it is very important from practical points of view since it serves a
theoretical foundation for subspace methods for identifying state space models from
given input-output data.
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7.3.1 Linear Matrix Inequality

Suppose that the data (A, C, C, A(0)) are given. Substituting (Q, R, S) of (7.21)
into (7.22), we see that the stochastic realization problem is reduced to finding solu-
tions II > 0 satisfying the LMI such that

II - AITAY C* - Anic*

M) = | -
() C —CITAT A(0)-cCHCT

>0 (7.26)

Note that if there exists IT > 0 that satisfies M (II) > 0, then from (7.21), we have
(Q, R, S) satisfying (7.22). Thus Z(z) of (7.11) becomes positive real.

Theorem 7.1. Suppose that (A, C, C'V) is minimal, and A is stable. Let II be a
solution of the LMI (7.26), and let a factorization of M (II) be given by

T
B||B
M(H)_[D] [D} >0 (7.27)
B
where [ D] has full column rank. In terms of B and D, we further define

W(z)=D+C(zI — A)™'B (7.28)

Then, W (z) is a minimal spectral factor of the spectral density matrix &(z) that
satisfies
B(2) = W)W (7.29)

Conversely, suppose that there exists a stable minimal spectral factor satisfying
(7.29). Then, there exists a solution II > 0 satisfying (7.26).

Proof. [107] Let II > 0 be a solution of (7.26). It is clear that B, D satisfying
(7.27) are unique up to orthogonal transforms. From the (1,1)-block of the equality
of (7.27), we have the Lyapunov equation

II— AITAT = BBT (7.30)

where II is positive definite and A is stable. Thus it follows from Lemma 3.5 that
(A, B) is reachable, implying that W (z) of (7.28) is minimal and stable.
Now, from (7.28), we have

W)W () =[D+C(zI — A 'B|[D* + BY (2711 — AT 1C"]
=DD" 4+ C(2f — A)7'BBT (2711 — AT)71CT
+C(zI - A)'BDY + DBY (271 — ATt (7.31)
From (7.30), we have the identity

BB = (2 - A)I (271 — AT) + (21 — A)ITAT + ATl (27T — AY)
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Substituting this identity into (7.31) and rearranging the terms using Q = BBT,
S =BDT, R=DDT and (7.21) yield

W()WT(z"") = DD + c11C™ + C(21 — A)~'(AICT + BD™)
+ (CITA" + DBM)(27'1 — AT)~1o"
=A0)+C(zI — A)CT +C(z1 - AN C*
=2Z(2)+ 2T (z7Y) = #(2) (7.32)

Thus we conclude that W (z) is a stable minimal spectral factor of &(z).

Conversely, suppose that W (z) = D + Cy(2I — A1) !B is a minimal spectral
factor. Since (A, C, C, A(0)) are given data, we can set A; = A and C; = C asin
(7.19). Now using W(z) = D + C(zI — A) "' B, we get

(7.33)

T T _ AT\—1 AT
W()WT (™) = [C(e] =) 1] [ggT ggT] [(Zf AI) c

Since (4, B) is reachable, there exists a unique solution IT > 0 for the Lyapunov
equation BBT = II — AII AT, from which

BB = (21 — A)IT (27T — AT) + (21 — A)ITA™ + AIT(z711 — A")
Substituting this identity into (7.33) yields
W)Wz = DD + CIICT + C (21 — A~ (AIICT + BD™)
+ (CITAT + DBT) (271 — AT)~1CT
But from (7.11) and (7.12),
WeEWz ) =d(z) = Z(2)+ 21 (=Y
=C(z2I —A)7ICT+ A(0) + C(z7'1 — AT CT

holds. Since (C, A) is observable, all the columns of C(zI — A)~! are independent.
Thus, comparing two expressions for W (2)W T (z~1) above gives

DDT = A(0)—cIICc",  BDT=CT - AIIC"

By using these relations in (7.33), we get

W)W (z 1) =[0I — AL 1]

IT— AITAT  C" — ALIC"
C —CIIAT A(0)—CIIC*
[(z[ — AT)_ICT}
X
1
o _ ATy-1,T
— (Ol — A M) [(” 476 }
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Clearly, the right-hand side of the above equation is nonnegative definite for z = el?,
—m < 6 < 7, sothat M(II) > 0. Thus the triplet (I, B, D) satisfies (7.27),
implying that the LMI (7.26) has a solution II > 0. O

Now we examine the size of spectral factor W (z) under the assumption that
LB;} has full column rank and that R(11) := A(0) — CIICT > 02. Recall that the
factorization formula for the block matrix of the form (see Problem 2.2)

XY [T YV [X-YViZ 0 I 0
ZV| |0 I 0 V{i|V1iZz 1

Comparing the above expression with M (II) of (7.26), we get X = II — AIl AT,
Y =CT — AlICT = ZT and V = R(II). Thus it can be shown that

|1 K II — AITAT — KR(IHKT 0 I 0
M(H)—{o IH 0 R(I)| | KT 1
where K is exactly the Kalman gain given by [see (5.74)]

K = (CT" — AIC™)R™(1T)

We define
Ric(IT) := AITA" — IT + KR(IT)K" (7.34)

Then, under the assumption that R(II) > 0, we see that
MUI)>0 & Ric(Il) <0

This implies that M (1) > 0 if and only if R(II) > 0 and the algebraic Riccati
inequality (ARI)

AITAY —IT + (C* — AIIC™)(A(0) — cIC) Y(C - CcTAY) <0 (7.35)
holds. Moreover, we have
m := rank M (II) = p + rankRic(II) (7.36)
Hence, if 1] is a solution of the ARE
II = AITA™ + (CT — AICT)(A(0) — cIC™) =Y (C — cTAY)  (7.37)

then the corresponding spectral factor W (z) is a p X p square matrix. Otherwise, we
have m > p, so that the spectral factor W (z) becomes a wide rectangular matrix.

It follows from Theorem 7.1 and the above argument that a Markov model of y
is given by

xz(t+ 1) = Az(t) + Br(t) (7.38a)
y(t) = Cx(t) + Du(t) (7.38b)

where B and D are solutions of the LMI, and v is a white noise with mean zero and
covariance matrix I, with m > p.

Note that the latter condition cannot be avoided in the following development.
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Lemma 7.2. Suppose that (A, CT) is reachable. Then all solutions of the ARE
(7.37) are positive definite. (Note that Il = E{z(t)zT ()} > 0.)

Proof. Suppose that II is not positive definite. Then, there exists n € R™ with
n™IT = 0. Thus, pre-multiplying (7.37) by ' and post-multiplying by 7 yield

nYAITA Yy + 0 (CY — AIICY)(A(0) — CIICY) Y(C - CHTAY Y =0

Since both terms in the left-hand side are nonnegative, we have
ntAIl =0, tCt=0
Define 1 := nT A. Then, from the above, 5 IT = 0 holds, and hence we get
nLAIT =0, niCt=0 = ntA2ITI=0, ntACT =0
Repeating this procedure, we have eventually
nt[CT ACT A2CT ... =0

This is a contradiction that (A, C'') is reachable, implying that IT > 0. O.

The ARE of (7.37) is the same as that of (5.75) satisfied by the state covariance
equation of the stationary Kalman filter. Hence, we see that the square spectral factor
is closely related to the stationary Kalman filter as shown in Example 7.1 below.

7.3.2 Simple Examples

Example 7.1. Suppose that A = 1/3, C = 2, C = 2/3, A(0) = 9/4 are given.
From (7.11) and (7.12), the spectral density is given by

- 4/3 9 4/3 9
B(z) =2 Z' =
@) =2&+2° ()= gt ta1sTs
It is easy to see that
9 4/3
7 =
G =g+, s

is strictly positive real. Also, the ARI (7.35) becomes
1 2 2 _N\2/9 -1
Rie(1T) = 11— 1+ (, - ,01) (, —41m) <0
ie(l) = g 73" =

where 9/4 — 411 > 0 by the assumption. It therefore follows that
2 4 1 2

a? — %74 :4(11— )(H— )50
9 9 2 9

Hence, we have II, = 2/9 and II* = 1/2, and any solution I of the Riccati
inequality satisfies II, < II < II*. It should be noted that these are boundary
solutions of the LMI as well.
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i) Consider the case where II = II,, = 2/9. From the LMI of (7.26),

16781 14/27]  [4/9
M(2/9) = l14/27 49/36] B l?/G] [4/9 7/6}

Thus we have B = 4/9, D = 7/6, so that, from (7.28), the spectral factor is given

by
7 8/9 7\ z+3/7
W* = =
G =6+, 13 <6> 2 —1/3
The corresponding Markov model is given by the innovation model
1 4
z(t+1)= 33:(t) + gu(t) (7.39a)
7
y(t) = 2z(t) + 61/(t) (7.39b)

where v is a white noise with mean O and variance 1.
ii) Consider the case where II = II* = 1/2. In this case, we have

4/9 1/3] _ l2/3

1/3 1/4 1/2] 273 172]

M(1/2) = [

Thus we get B = 2/3, D = 1/2, so that the spectral factor is given by

143 1\ 2+7/3
W(Z)_2+z—l/3_<2>z—l/3

so that the Markov model becomes

st +1) = ;w(t) + gu(t) (7.400)
y() = 22(t) + ;u(t) (7.40b)

We observe that W, (z) and its inverse W, !(z) are stable, implying that this is
a minimal phase function. But, the inverse of W*(z) is unstable, so that this is a
non-minimal phase function. O

The next example is concerned with a spectral factor for I7 satisfying the Riccati
inequality, i.e.,2/9 < II < 1/2.

Example 7.2. For simplicity, let II = 1/4. Then, we have

2/9 1/2 biba| |b1d
44 lm 5/4] 45 o]
Though there are other solutions to the above equation, we pick a particular solution
d= \/5/2, b = 1/\/5, by = 1/\/45. Thus the spectral factor is given by

b2+ b2 byd
by &
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_ |5 2/vs 2/V45

WE=19 %203 2-1/3

In this case, since m = rank M (1/4) = 2, the spectral factor becomes rectangular,
and the corresponding Markov model is given by

1 1 1
z(t+1) = 333(t) + e (t) + \/451/2@) (7.41a)
y(t) = 2z(t) + ‘f vi(t) (7.41b)

where v; and v, are mutually independent white noises with mean zero and unit
variance. That IT = 1/4 implies that the variance of the state = of (7.41)is 1/4.

Now we construct the stationary Kalman filter for the system (7.41). Since A =
1/3,C =2,Q =2/9,5 =1/2, R = 5/4, the ARE of (5.67) becomes

1 2P 1\° 57" 2
P= _P-— 4P
9 ( 3 " 2) ( * 4> *y
Rearranging the above equation yields
9 1 1
36P +8P—4:(4P+1) 9P—4 =0

Thus we have P = 1/36 since P > 0, so that from (5.68), the Kalman gain is given
by K = 8/21. This implies that the stationary Kalman filter has the form

) 1 8
B(t+1]8) = it t—1)+ ) e (7.422)
y(t) = 25t | t — 1) + e(t) (7.42b)

where e is the innovation process with zero mean and covariance (see Lemma 5.7)
cov{e} = C*P+ R = (7/6)*

It can easily be shown that the innovation process e is related to v of (7.39) via
e(t) = (7/6)v(t), so that (7.39) and (7.42) are equivalent under this relation. Also,
the transfer function of the stationary Kalman filter from e to y becomes

16/21 z2+3/7 6

Tye(z) =1+ =

e1)3 " z—1y3 = 7 )

We see that T (z) equals the minimal phase spectral factor obtained in Example 7.1
up to a constant factor 6/7.

Also, it can be shown that the stationary Kalman filter for a state space model
(7.40) is the same as the one derived above. This fact implies that the spectral factor
corresponding to II, is of minimal phase, and its state space model is given by a
stationary Kalman filter. O
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Example 7.3. Consider the case where A = 1/3, C = C, C' = 2/3 and A(0) = 2.
Note that (A4, C, C') are the same as in Example 7.1, while A(0) is reduced by 1/4.
Thus we have

4/3 ,
Z(z)=1 <ReZ(e?) <
(2) +z—1/3 = 0<ReZ(e?)<3

Thus Z(z) is positive real, but not strictly positive real. Under the assumption that
R(II) =2 — 411 > 0, it follows from (7.35) that

Ric(IT) = ;H—H+ (g - 211)2(2—417)71 <0

Rearranging the above inequality yields
9IM* —-6I1+1<0 = (3II-1)*<0

Obviously, this inequality has only one degenerate solution IT = IT, = II* = 1/3,

so that
8/27 4/9] _2V2 Do V2

4/9 2/3 b= 3v/3’ V3

M(1/3) = l
Thus the spectral factor is given by
\/2+2\/2 2 _\/2 z+1
V3 3v3z-1/3 V3z-1/3

We see that if the data (A, C, C, A(0)) do not satisfy the strictly positive real
condition, the Riccati inequality degenerates, and the spectral factor W (z) has zeros
on the unit circle. O

W(z) =

From above examples, we see that under the assumption that R(II) > 0, there
exist the maximum and minimum solutions (II,, IT*) of the LMI (7.26), and that
all other solutions of the LMI are bounded (/1, < II < II*). If we can show that
this observation holds for general matrix cases, then we can completely solve the
stochastic realization problem. The rest of this chapter is devoted to the studies in
this direction.

7.4 Positivity and Existence of Markov Models

7.4.1 Positive Real Lemma
Let P be the set of solutions of the LMI (7.26), i.e.,
P={IT|M(I)>0, II"=1I, II >0}

where it may be noted that the condition that I7 is positive definite is not imposed
here. However, eventually, we can prove that all II € P are positive definite under
the minimality assumption in Subsection 7.4.2.
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Given a positive definite 7T € P, we can find B and D by the factorization of
(7.27) and hence we get Q = BBT, S = BD", R = DD™. Thus, associated with
II € P, there exists a Markov model for y given by (7.14) [or (7.38)]. In this section,
we prove some results that characterize the set P.

Lemma 7.3. The set P defined above is closed and convex.

Proof. To prove the closedness, we consider a sequence Iy, I5, --- € P such that
klim I, =11, ie., klim |[IT;, — II|| = 0. Since M ( - ) is continuous from Problem
¢ —00 —00
7.4, we get
0< lim M(I;) = M(lim II;) = M)
k— o0 k—o0

Clearly, 11 is symmetric and nonnegative definite, so that I7 € P holds.

Now suppose that I1y, ITs € P. Then, for a+ § = 1 with a; § > 0, it can easily

be shown that

M(ally + Bll5) = aM (1) + M (1>) > 0

Thus, all; + BII, € P. This completes the proof. O
Definition 7.2. Foru(i) € RP, i = —1, —2, - - -, we define the infinite dimensional
vector

u(-1)

Also, associated with the Toeplitz matrix T of (7.5), we define a quadratic form

wlT u = i uwt (k) A(l — k)u(l) (7.43)

kJl=—oc0

where it may be noted that k, | take negative integers. In this case, if uTTyu > 0
holds for any w, then T'y is referred to as positive real. Also, if u = 0 follows from
uTT, u = 0, then T is called strictly positive real. Moreover; if the condition

wTT u = pllul?, 3p>0 (7.44)
holds, Ty is called coercive. O

It can be shown that the Toeplitz matrix 7'y is positive real if and only if all finite
block Toeplitz matrices are positive definite, i.e.,

AO)  ATA) - AT(N 1)

o AT(N —
T:(N) = A(:l) AEO) . 4 (Af g >0, VN (7.45)

A(N'— 1) A(N'— 2) - A.(O)
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holds. Also, define the block anti-diagonal matrix

I p
0 .

J= € RNPXNp
Ip
I, 0

Then, for the finite block Toeplitz matrix

A(0) A1) - AN —1)
T P —
. A :(1) A(:O) '. A(N: 2) 46
AT(N = 1) AT(N =2) - A(0)

we have T_(N) = J T, (N)J. Thus, we see that T is positive real if and only if
T_ is positive real.

The following theorem gives a necessary and sufficient condition such that the
set P is non-empty.

Theorem 7.2. (Positive real lemma) The set P is non-empty if and only if the
Toeplitz operator Ty of (7.5) is positive real. O

For a proof of this theorem, we need the following lemma, which gives a useful
identity satisfied by the matrices I, @), R, S.

Lemma 7.4. Suppose that II, (), R, S are solutions of (7.21). Then, we have

W= gOm + Y 0 ol &l [N o

t=—o0
where £ is given by
Et+1)=ATE@) + CTu(t),  &(—o00) =0 (7.48)
Proof. A proof is deferred in Appendix of Section 7.10. O

Proof of Theorem 7.2 If II, ), R, S satisfy (7.21) and (7.22), then the right-
hand side of (7.47) is nonnegative. Thus we see that T'; is positive real.

Conversely, suppose that 7' is positive real, and we show that P # ¢. To this
end, define

t=—o0

8(&) = {u

= (AT>—t—1cTu<t>} ., EER
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and a nonnegative matrix I7* by3

-1

T ¢ = min uT (K)A( — K)u(l) = min uT T, u 7.49
§re= min Y, uw'(RA(-Kul) = min Wl Ty (7.49)

kJl=—oc0
In terms of IT*, we define [see (7.21)]
Q*=I* - AIT*AY, s* =0 — Ar*c*, R* = A(0)—cm*c*
It is easy to see that if we can prove
* S*
(S| 20 (7.50)

then we have P # ¢, and hence the proof is completed.
To prove (7.50), we consider the system of (7.48):

§(t+1) = AT¢(t) + Cult),  &(-o00) =0

Letu = (--+, u(—2), u(—1)) be a control vector that brings the state vector to
£(0) = ¢ att = 0. It then follows from Lemma 7.4 that

W Tou =€+ Y €5 W) [(g‘i;T gi} [52’3] @.51)

t=—oc
Also, letv = (---, v(—2), v(—1) ) be defined by
v(t) == u(t + 1), t=-2,-3, -

where v(—1) is not specified. Let the corresponding states be given by &,. From the
definition of the control vector v, it follows that

L) =&(E+1), t=-2,-3-; &(-1)=¢0)=¢

with the boundary conditions &, (—o0) = £(—o0) = 0. Define &,(0) = (. Then, we
see from Lemma 7.4 that

v v = (TIT*C + t:im[é;r(t) vt (1)] [(ng 153} [i((tt))}
— (T + tzljm[éT(t +1) u' (t+1)] [(%T }H [%13]
~cres im[iT(t) o) | e | |50

70 v o) [ e ] [50)] (.52)

3This is an optimal control problem that minimizes a generalized energy with the terminal
condition £(0) = £. We show in Subsection 7.4.2 that the right-hand side of (7.49) is quadratic
in &, and IT™ is positive definite.
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Since £(0) = £ and u(0) = v(—1), we see from (7.51) and (7.52) that
vIT v — T u= NI ¢ - €V T ¢

+ €T T (1)) [(ng f&f} [v(fl)}
Hence, we get

GRACHI Pl N

= (W' Tyo = (TIT() — (" Tyu — 1 1T7¢) (7.53)

From the definition of IT*, we see that v T, v — (Y IT*¢ > 0 and that u' T, u —

ETIT*¢ can be made arbitrarily small by a proper choice of u, and hence the right-

hand side of (7.53) becomes nonnegative. Since £ and v(—1) are arbitrary, we have

proved (7.50). O

Theorem 7.3. The following statements are equivalent.

(i) The Toeplitz matrix Ty of (7.5) is positive real.

(ii) The transfer matrix Z(z) of (7.11) is positive real.

Proof. From (7.11), a state space model corresponding to Z*(z) is given by
zt+1) = AYz(t) + CTu(t),  F(—oc)=0 (7.54a)

y(t) = C(t) + ;A(O)u(t) (7.54b)

From (7.54), we see that

=Y Cun It + Lo

k=—o0

ZATt— (k) + /1()()

k=—oc0

and hence
t—1

y Out) = Y uT (kA — k)u(t) + ;uT(t)A(O)U(t)

k=—oc
Taking the sum of both sides of the above equation yields [see (7.87), Section 7.10]

—1 -1 t—1 —1

Yovtum = Y Y uwtAE-Ru@) + > ut()AO0)u()
t=—o0 t=—00 k=—o0 t=—o0
—; i: i ut (k)A(t — k)u(t) = 9 T u
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Since y = ZT(2)u, it follows from Lemma 3.4 (ii) that

> tout) = o [ @z ute o
1

-, /_ " UT(€°) [2(67) + 27(e)] (e ) dw

The right-hand side of this equation is nonnegative for any u(e’*) if and only if
Z(e) + Z2%(e¥) >0, —m<w<7

Hence, we have

uTTiu=2 Z )>0 <  Z(z): positive real (7.55)
t=—o0
This completes the proof of this theorem. O

Theorem 7.4. Suppose that the Toeplitz matrix T of (7.5) is positive real. Then, P
is bounded, closed and convex, and there exist the maximum II* and the minimum
11, such that for any II € P,

I, < 1 <Ir* (7.56)

holds, where the inequality A > B means that A — B is nonnegative definite.

Proof. That P is a closed convex set is already shown in Lemma 7.3. Thus it suffices
to show that (7.56) holds.

First we show II < II*,V II € P. From the definition of IT* of (7.49) and
Lemma 7.4 that

€1¢ = min {éTﬂéJr S 4 0) EH [%ﬂ} >0

t=—o0

where £(0) = &. It therefore follows that for any IT € P,

¢ e = min _Zl[sTo 01| & ][50 20

€8(¢

Since £ is arbitrary, IT < IT* holds.
To show II > II,, we define the backward process 4 by

y@t) =y(=t),  t=0,%1, - (7.57)
Clearly, the process ¢ is stationary, since

A) = B{y(t +1)y" (1)} = B{y(~t = Dy" (=)} = A(=1)
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Let P be the set of covariance matrices II of the backward Markov models associated
with the covariance matrices { A(k) }. As shown in Section 7.2, there exists a one-to-
one correspondence between P and P in the sense that

He?P o OH=II"1e?

Now let IT* be the maximum element in the set P. In fact, we can show that IT*
exists by using the same technique used in the proof of the first part. Then, by the

above one-to-one correspondence, I7, := (I1*)~! becomes the minimum element
in P. Hence, for any IT € P, we see that I1, < I holds. Therefore, if P is not empty,
it follows that (7.56) holds. O

7.4.2 Computation of Extremal Points

We have shown that I7* and I, are respectively the maximum and the minimum in
the set P, and that for any II € P, the inequality IT, < II < IT* is satisfied. In
this subsection, we provide methods of computing the extreme points I7* and II,,
and show that these extreme points respectively coincide with the extreme solutions
of the Riccati inequality defined in Section 7.3. First, we compute I/* as a limit of
solutions of finite dimensional optimization problems derived from (7.49).

We assume that (A, C,C") is minimal, and define the vector

u(—1)
U 1= S R*P
u(—k)

and also for £ € R™, we define the set

—1
8k(6) = {u £= Y (AHTICTu() } = {u| ¢ = Ofwr}
t=—k
Then we consider a finite dimensional optimization problem of the form
V¢ = min ul Ty (k)up >0 (7.58)
uR €8k ()

where T (k) is the block Toeplitz matrix of (7.45), and Oy, is the extended ob-
servability matrix with rank n. Since 8;(§) C Sp41(€) C S8(&), it follows that
I, > Iy, > II*. Also, II* > 0 holds by definition, so that I} is decreasing
and bounded below. Thus I, converges to II*, a solution to the original infinite
dimensional problem.

The finite dimensional problem of (7.58) is a quadratic problem with a linear
constraint, so that it can be solved via the Lagrange method. In fact, define

1
£ = ul T () we + AT (€ - O wy)
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Then, from the optimality condition, we have

oL

= T, (k — O =
Suy 0 = +( )uk OrAg 0

and £ = OF uy. Hence, we see that A, = (0L T " (k)Ox) ¢, where the inverse
exists since T_;l (k) and Oy have full rank. Thus, we see that the optimal solution is
given by

up = T, (R)OR(Op T M (R)OR) ™M = I = (04T (R)O) ™
For simplicity, we define
Q=1 = 03T (k)Og

where recall that

C

CA
Ok — ] € ]Rpkxn

CA'k—l

We now derive a recursive equation satisfied by (2; and {2, ,. We see from (7.45)
and (7.7) that

D1 = OF Tk + 1)Op

A(0) COT
0,07 Ty (k)

= [CT ATOT

C
[ o A} (7.59)

By the inversion results for the block matrix [see Problem 2.3 (c)],

-1

A(0)  COF

0,CT Ty (k)

B Ay, —ACOFT (k)

| ST R)0RCT Ay TN (R) + T (R)0RCT AL COLT I (K)

where
Ay, = [A0) = COLT, M (k)0 CT]™! = (A(0) = C02,CT) !
It therefore follows from (7.59) that
Q1 = CTAC — AT O T (k) 0k CT ALC — CTACOL T (k)0 A
+ ATOTTI (k) Or A+ ATOL T (k)0,CT ALCOT T (k) Or A
= AT A+ (CT — AT 2,CT)(A(0) — CLCT)THC — CRLA)
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From the above result, we have a recursive algorithm for computing I7*.
Algorithm 1 Compute the solution of the discrete-time Riccati equation

Qi1 = AT A+ (CT — AT 2,07 (A0) — CCT)™HC — CRLA) (7.60)

with the initial condition 2y = 0 to get N, = k]im £2,. Then, the maximum I7* in

— 00
P and the associated covariance matrices are given by
H*:D;l, Q*:H*_AH*AT

S*=CT - A*C*, R*=A0)-cm*c?
We see from the dual of Lemma 7.2 that the limit point 2., is positive definite. [
Remark 7.1. It follows from (7.25) that the dual LMI for (7.26) is given by
M(I) := 1= A_T_IM ct - ATI?(?T >0, II>0 (7.61)
C—-CHA A0)-CIICT

Thus, Algorithm 1 recursively computes the minimum solution of the dual Riccati
equation associated with (7.61), thereby giving the minimal covariance matrix of the
backward Markov model. Thus, the inverse of the limit gives the maximum solution
II* to the ARI associated with the LMI (7.26), and hence to the LMI (7.26) itself. [J

By using the discrete-time Riccati equation associated with the LMI (7.26), we
readily derive the following algorithm.

Algorithm 2 Compute the solution of the discrete-time Riccati equation
Q1 = A AT + (CT — A, CTY(A(0) — C0,CTY7H(C — C AT (7.62)

with the initial condition {2y = 0 to get 2. = lim (2;. Then, the minimum I7, in

k—o0
P and the associated covariance matrices are given by
II, = N, Q. =1, — AITl, A"

S,=CT—AmCc*, R,=A0)-cI.C?t
It can be shown from Lemma 7.2 that the limit {2, is positive definite. O

Remark 7.2. The discrete-time Riccati equation in Algorithm 2 is the same as the
discrete-time Riccati equation of (5.62). It is not difficult to show that

2 =T (k)CF
satisfies (7.62) [see Problem 7.6], where
Cr = [C’T ACT ... Ak_lc_’T]

Also, (7.62) is a recursive algorithm that computes the minimum solution of the ARE
(7.37). Hence, the solution 17, of Algorithm 2 gives the minimum solution to the ARI
associated with the LMI, so that /7, is the minimum solution to the LMI (7.26). [
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The existence of maximum and minimum solutions of the LMI (7.26) has
been proved and their computational methods are established. This implies that the
stochastic minimal realization problem stated by Faurre is now completely solved.
The most difficult task in the above procedure is, however, to obtain a minimal real-
ization (A, C, C'") by the deterministic realization algorithm. In Chapter 8, we shall
show that this difficulty is resolved by means of the approach based on the canonical
correlation analysis (CCA).

7.5 Algebraic Riccati-like Equations

We derive algebraic Riccati-like equations satisfied by the difference © := IT* — II,
between the maximum and minimum solutions. Lemmas in this section are useful
for proving Theorem 7.5 below.

Consider the ARE of (7.37):

II = AITA" + (C* — AIIC")(A(0) — CcIIC™) " Y(C — CcITAY)  (7.63)

It should be noted that this ARE has the same form as the ARE of (5.75), where the
minimum solution I7, equals X of (5.75).
Let the stationary Kalman gain be defined by

K = (C* - Anrch)(A(0) —cme™t) ! (7.64)

and let Ax := A — KC be the closed-loop matrix. Then, we have the following
lemma.

Lemma 7.5. The ARE of (7.63) is expressed as
IT=AxIAL — KAO)KT + KC + CTK" (7.65)
Proof. Use (7.64) and the definition of A . See Problem 7.7. O

Let IT* and II, be the maximum and minimum solutions of (7.63), respectively.
Thus, in terms of these solutions, we define

K*:=(C" — AIT* 0™ (A(0) — o) !
K, := (C* — AI,.C1)(A(0) — CIT,C") !
and A* : = A—- K*C, A, .= A— K.,C. It then follows from Lemma 7.5 that
T = AT (AT — K*A0)(K*)T + K*C + CT(K*)T (7.66)
I, = A JILAT — K, A0)(K,)T + K.C+ C"(K,)" (7.67)

The following lemma derives the Riccati-like equations satisfied by the differ-
ence between the maximum and the minimum solutions of the ARE (7.63).



7.5 Algebraic Riccati-like Equations 193

Lemma 7.6. Let © := [I* — II,. Then, O satisfies the following algebraic Riccati-
like equations

O = A,0AT + (K, — K*)(A(0) = cIr*C) (K, — K*)* (7.68)

and

O =A,0AT + A,0CT (A(0) — cIT*CT)tcoAT (7.69)
Proof. Since A* = A, + (K, — K*)C, it follows from (7.66) that
I = (A, + (K, — K*)O)IT* (A, + (K. — K*)C)T
— K*A(0)(K*)" + K*C + CT(K*)*
= A JT*AY + (K, — KCIT*AY + A, T CY (K, — K*)*
+ (K, — K)CII*CT (K, — K*)T — K*A(0)(K™*)"
+ K*C +CY (K"t (7.70)
Also, from A, = A - K..C,
A 0T°CT = Al*Ct - K.crrrct
=CT - K*(A(0) —c1r*Cc") — K,cr*c?
=C" - (K. - K*)CII*C" — K*A(0) (7.71)
Thus, using (7.71), we see that (7.70) becomes
= A" A} — (K. - K)CII"CY (K, — K*)' + K.C + CT(K.,)"
+ K A0)(K*)T — KL A(0)(K*)T — K A(0)(K.)"
Taking the difference between the above equation and (7.67) gives
0= A,0A — (K, - K*)CII*CY (K, — K*)*
+ K AQO)(K*)T = K A(0)(K*)T = K* A(0)(K.)" + K. A(0)(K.)T
Rearranging the terms yields (7.68). Similarly to the derivation of (7.71), we have
A JI1,CY = (A - K,.C)I1,C" = O — K. A(0) (7.72)
Taking the difference between (7.71) and (7.72) yields
A,00" = A (IT* - I1,)C" = (K. — K*)(A(0) — CcIT*C™)
Applying this relation to (7.68) leads to (7.69). O
Lemma 7.7. If O is nonsingular, the inverse O~! satisfies

o7l =ATo7 4, + CT(A(0) — ci,.cT)~C (7.73)
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Proof. From (7.69), we see that if © is nonsingular, so is A.. Thus it follows that
A7toADH =0 + 00t (AW0) - c.ct —coct) Lo
Application of the matrix inversion lemma of (5.10) gives
ATo=t4, =0t - (A(0) - cir,.c™)~tC
This completes the proof of (7.73). O

We shall consider the strictly positive real conditions and a related theorem due
to Faurre [47] in the next section.

7.6 Strictly Positive Real Conditions

In this section, we show equivalent conditions for strict positive realness, which will
be used for proving some results related to reduced stochastic realization. In the
following, we assume that there exist the maximum and minimum solutions I7* and
11, of the ARE (7.63).

Definition 7.3. (Faurre [47]) For the minimum solution II,, we define
Q. =1, - AIl,A*, S,=C" - AIIL,C*, R,=A0)-CIC*
Suppose that the following inequality
R, := A(0) - CII,CT >0 (7.74)
holds. Then, the stochastic realization problem is called regular. O

Theorem 7.5. Let (A,C,CT) be a minimal realization. Then the following (i) ~
(iv) are equivalent conditions for strictly positive realness.

(i) Z(z) is strictly positive real, or Ty is coercive.

(ii) © = II* — I, is positive definite.
(iii) R, >0, and A, := A— S,R,;'C is stable.
(iv) The interior of P is non-void. In other words, there exists II € P such that the

corresponding covariance matrices are positive definite, i.e.,
QS
[ G510

Proof. 1° (i) — (ii). From (7.44), there exists p > 0 such that the operator T, —p I
corresponding to (4, C, C, A(0)—pl},) is positive real. Let P, be the set of solutions

of the LMI with (A, C, C, A(0) — pI,,). Then, we see that P, C P. Let II; € P,
and define
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Qo = IIy — AITG AT, Sy =CT — AII,CT, Ry = A(0) — CII,C*

It follows from Lemma 7.4 and (7.49) that

-1

§HI°E = ¢Mo + min t_oo{[fT(t) w ) [26? Ro fo/ﬂp} [58]
+ puT(t)U(t)}

The constraint equation for the above optimization problem is given by

Et+1) = ATe(t) + CTult),  &O0) =&  &—s0) =0

Qo So
Then, from [ S(r)f Ro — pI > 0, we see that
—1
T * . T
7 — Iy)¢ > min u (H)u(t 7.75
€101 M) p min 3wt @) 1.75)

Referring to the derivation of Algorithm 1 in Subsection 7.4.2, we observe that the
optimal solution to the minimization problem in (7.75) becomes

-1

min > wT(tu(t) =£H(OT0)E>0,  £#0 (7.76)

ues(E),

where, since A is stable and (C, A) is observable,
0o =Y 4")cTCcA >0
i=0
Therefore we have
€106 > €T (I — o)E > p€T(0T0)71E >0,  E#0

This completes the proof of (ii).

2° Next we show (ii) — (iii). For IT* and II,, we define R* = A(0) — CII*C™
and R, = A(0) — CII,C™T. Suppose that IT* — II,, > 0 holds, but R, is not positive
definite. Then there exists 7 € RP such that R.n = 0,7 # 0. Hence,

(A(0) —CII,CTYp =0

holds. Noting that A(0) > 0, we have C'n # 0. Since R, > R* > 0, it also follows
that R*n = 0. Thus we have

(R.—R)n=0 = [I*"-1I,)C'np=0
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However, since C'T7 # 0, we see that I1* — II, is not positive definite, a contradic-
tion. Thus we have R, > 0. It follows from Lemma 7.7 that if @ = IT* — II, > 0,
the inverse © ! satisfies

o1 =ATo= 4, + CT(A(0) — cI,.cT)~C (1.77)

Since (C, A.) is observable, the Lyapunov theorem implies that if @~ > 0, A, is
stable.

3° We prove (iii) — (iv); this part is somewhat involved. By the hypothesis, A.
is stable and R, > 0.Let V' > 0, V € R™*", and consider the Lyapunov equation

X =ATXA, +CT(A0) - CcII.CY)'C+V (7.78)

Obviously, we have X > 0, and hence X —1 exists. In fact, even if V = 0, we have
X > 0 due to the observability of (C, A.).
We derive the equation satisfied by the inverse X ~!. From (7.78), we get

X-ctuo) -cm.chH e =A'XA, +V

Applying the matrix inversion lemma of (5.10) to both sides of the above equation
yields

X4 x—tcT(A0) - o, + x~ et ~tex !
— A:lX_lA;T _ A*_lX_lA*_T(A*_lX_lA*_T + V_l)_lA:lX_lA*_T

where A, is assumed to be nonsingular. Pre-multiplying the above equation by A,,
and post-multiplying by AT, we have

A X AT A X1 OM(A(0) - ClIT, + XHC) T tox Tt AT
=X (X +XA4,v71ATX)!
Thus the inverse X ~! satisfies
X 1=AX1AT + A, X1CY(A0) — O[T, + X Yoty tox AT
+ (X + XA, v AT x)~! (7.79)

Note that if V' — 0, then it follows that X ~! — @ = IT* — II,, and hence the above
equation reduces to (7.69).
Now define IT := II, + X ~!. Then the covariance matrices associated with I7
are given by
Q=1I,+X"'— A, + X~ 1H)AT
S =0 - AT + xHot
R=A(0)-C(I, + X HC"
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We show that (Q), S, R) satisfy the condition (iv). If V' — I - oo, then X~ — 0, so
that for a sufficiently large V', we get R > 0. It thus suffices to show that

—Ric(IT):=Q - SR™'ST >0
Since II, satisfies the ARE of (7.63), and since A = A, + K.C, we have
Q= (I, — AIILAT) + (X1 — Ax 14T
= K, (A0) - CII,LOYHKY + (X1 — (A, + K,C)X 1 (A, + K.O)1)
Moreover, from (7.79), it can be shown that
Q = K.(A(0) - CII,LCHK! + A, X 'CTR'CXxtAT
+ (X 4+ XAV AT ) A X WOTKY - K,oXx LAY
- K,.CX'1CTK?T
=K,RKX + A X 1CTR1CXx 14T
+ (X + XA VAT A X ICTKY — K,oX AT
= (K.R-AX'CHR Y K.R-AX1cTHT
+ (X + XAV AT x)! (7.80)
Also, by utilizing (7.72), we have
S=C"—- (A, +K.C)(II, + X HCo*

= K, A(0) - A, X"t - K.cr1,cT — K,cXxX~1C"
=K.,R—-AXC"

and hence
SR'ST = (K,R—- A X 'CY)R"Y(K.,R - A X 'CH)"
Subtracting the above equation from (7.80) yields
Q- SR'ST = (X + XA VAT X))t >0

This completes a proof of (iii) — (iv).

4° We finally prove (iv) — (i). From the assumption, there exists an interior
point I1g € P and p > 0 such that

Qo So Qo So
[SBF RO] 2 plasp = [SOT RO—PIp] =

Since Iy is a solution of the LMI with (4, C, C, A(0) — pI,), we see that T; is
coercive. O
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We present without proof a lemma related to Theorem 7.5 (ii), which will be used
in Section 8.6.

Lemma 7.8. Suppose that A(0) > 0 holds in Z(z) in (7.11), but we do not assume
that (A, C, C) is minimal. Then, if the LMI of (7.26) has two positive definite
solutions Iy and Iy, and if IIo — Iy > 0, then Z(z) is strictly positive real.

Proof. If (4, C, C'") is minimal, the result is obvious from Theorem 7.5. A proof
of the non-minimal case is reduced to the minimal case; see [106]. O

7.7 Stochastic Realization Algorithm

By using the deterministic realization algorithm of Lemma 6.1, we have the follow-
ing stochastic realization algorithm.

Lemma 7.9. (Stochastic realization algorithm [15])

Step 1: For given covariance matrices {A(l), 1 = 0,1, --- | L}, we form the
block Hankel matrix
A1) AQ2) - AR)
Heo o A(2) A(3) A(k:.+ 1) J—

A(:k) A(k:+ 1) - . A(2k: ~1)

where 2k — 1 < L and k > n.
Step 2: Compute the SVD of Hy, j, such that

Y, 0] [Vt

] ~ U,V (7.81)

where X contains the largest n singular values of Hy, i, and the other singular
values are small, i.e., 01 > 09 > 2> 0, > Opy1 > - .

Step 3: Based on the SVD of (7.81), the extended observability and reachability
matrices are defined by

Op = UZY2, e =32V} (7.82)
Step 4: Compute the matrices A, C, C'T by
A=0l_0p, C=0r1:p1:n), CT=0Ck(1:n,1:p) (7.83)

where O = Ok(p+1:kp,1:n).
Step 5: By using (A, C, C, A(0)) so obtained, we define the ARE

I = AITA" + (CT — AITCT)(A(0) — CIIC™) ™ (C — CcITAT)  (7.84)
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Compute the minimum (or stabilizing) solution II, > 0 by the method described in
Subsection 7.4.2, or by the method of Lemma 5.14, to obtain the Kalman gain

K = (C' — Am1,.Cc")(A(0) —cm.c™)™! (7.85)
Then we have an innovation model
z(t +1) = Az(t) + Ke(t) (7.86a)
y(t) = Cz(t) + e(t) (7.86b)
where cov{e(t)} = A(0) — CII.C™. O

Since the covariance matrix of the innovation process e of (7.86) is not a unit
matrix, note that the Markov model of (7.86) is different from the Markov model of
(7.38). In fact, K in (7.86) is expressed as K = BD~! using B and D in (7.38).

A crucial problem in this algorithm is how we can compute accurate estimates
of covariance matrices based on given finite measured data. To get good estimates,
we need a large amount of data. If the accuracy of estimates of covariance matrices
is lost, then data (A4, C, C, A(0)) may not be positive real, and hence there may
be a possibility that there exist no stabilizing solutions for the ARE of (7.84); see
[58,1006, 154].

7.8 Notes and References

¢ By using the deterministic realization theory together with the LMI and AREs,
Faurre [45—47] has developed a complete theory of stochastic realization. Other
relevant references in this chapter are Aoki [15], Van Overschee and De Moor
[163, 165] and Lindquist and Picci [106, 107].

e In Section 7.1, as preliminaries, we have introduced the covariance matrices and
spectral density matrices of a stationary process, and positive real matrices. In
Section 7.2, we have defined the problem of stochastic realization for a stationary
process based on [46].

e In Section 7.3, by using the results of [46, 107], we have shown that the stochas-
tic realization problem can be solved by means of the LMI and associated ARI
and ARE. Also, some simple numerical examples are included to illustrate the
procedure of stochastic realization, including solutions of the associated ARIs,
spectral factors and innovation models.

e Section 7.4 deals with the positivity of covariance data and the existence of
Markov models. By using the fact that there exists a one-to-one correspondence
between a solution of LMI and a Markov model, we have shown that the set
of all solutions of the LMI is a closed bounded convex set, and there exist the
minimum and maximum elements in it under the assumption that the covariance
data is positive real; the proofs are based on the solutions of related optimal con-
trol problem due to Faurre [45,47]. Also, two recursive methods to compute the
maximum and minimum solutions of the ARE are provided.
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e In Section 7.5, we have introduced algebraic Riccati-like equations satisfied by
the difference of the maximum and minimum solutions of the LMI, together with
proofs. Section 7.6 provides some equivalent conditions such that the given data
are strictly positive real. A different proof of the positive real lemma based on
convexity theory is found in [135].

e In Section 7.7, a stochastic subspace identification algorithm is presented by use
of the deterministic realization algorithm of Lemma 6.1. A program of this algo-
rithm is provided in Table D.3. However, there is a possibility that this algorithm
does not work since the estimated finite covariance sequence may not be positive
real; see [38, 106] for details. In Section 7.10, a proof of Lemma 7.4 is included.

7.9 Problems
7.1 Let Z(z) = B(z)/A(z), and let
A(e??) == a(w) + jbw), B(e?) := ¢(w) + jd(w)

Derive a condition such that Z(z) is positive real in terms of a(w), b(w), c(w),

d(w). Also, derive a positive real condition for the function
o=
7.2 Find the condition such that the second-order transfer function

A(Z) =14+ a1z + apz™?

is positive real.
7.3 Find the condition such that
1 1 1 1
T AR 2 T ldazltaz? 2
is positive real. Note that this condition appears in the convergence analysis of
the recursive extended least-squares algorithm for ARMA models [109, 145].
7.4 Prove the following estimate for the matrix norm.
‘ AB
CD

‘ <A+ 1Bl +[ICll + [1D1i

From this estimate, we can prove the continuity of M (-) of Lemma 7.3.

75 Let A =1/3,C = C = +/2/3, A(0) = 2/3. Show that the LMI of (7.26) is
given by

8 V2 1
MU =1 9Hl g(l_lgﬂ) =
3 (1_3H) 3(1_3H)

Compute the spectral factors corresponding to I7, and IT*.
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7.6 Show that 2, = €T (k)CT satisfies (7.62).
7.7 Derive (7.65) from (7.63).
7.8 Solve the optimal control problem (7.76) in the proof of Theorem 7.5.

7.10 Appendix: Proof of Lemma 7.4

Define the positive definite function V (t) = £* () I1£(t) and compute the difference.
It follows from (7.48) that

V(t+1) = V(t) =["(1)A+u" ()CUI[ATER) + Chu(t)] — € (1) TE(t)
= N () (AITAT — INE(t) +u (1) CICTu(t)
+ T (W) AITC T u(t) +uT (1) CITATE(t)
Moreover, from (7.21),
V(t+1) = V(t) = = (0)QE) + u™ (1)[A(0) — Rlu(t)
+EB(CT = S)u(t) +uT (1)(C — STHE®)

SGORROIES I

+ut () AO0)u(t) + X () CTu(t) + u* (t)CE(t)

Taking the sum of the both sides of the above equation over (—oo, —1] yields

EOIE0) + 3 €70 uTe) EXIE

t=—o0

= Y S HA0un + Y EOCTun+ Y W ()0

t=—o0 t=—oc t=—o0

:311+12+I3

where we have used the boundary conditions V (0) = £1(0)I1£(0) and V (—o0) = 0.

-1
Since, from (7.48), £(t) = Z (AT 1=k Ty (k), we see that

k=—oc0

ZgT (£)C"u( Z Z uT (k) CAF=1Cut)

t=—o00 t=—00 k=—c0

= i X_: u (k) A(t — B)u(t)

t=—00 k=—o0
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Also, noting that I3 = L} holds, we change the order of sums in the above equation,
and then interchange ¢ and k to get

S Y WA Rk

I; =
t=—00 k=—o0
-2 -1
= > > u" AR - tyu(k)
k=—occ t=k+1
-2 -1
= Z Z ut (k) A(t — k)u(t)
t=—oo0 k=t+1
-1 -1
= > D uT(R)AE - ku(t) (7.87)
t=—co k=t+1
The last equality is due to the fact that for £ = —1, the second sum Z;:lt 1 becomes

void. Hence, it follows that

—1 t—1

> <uT(t)A(O)+ > uT(k)A(t - k)

t=—oc

L+ + 15

k=—o0

Il
IS
—
=
—~
=
|
o
N
=
Il
S
—
S
S

This completes the proof. O



8
Stochastic Realization Theory (2)

This chapter presents the stochastic realization theory due to Akaike [2, 3]. First, we
briefly review the method of canonical correlation analysis (CCA). We define the
future and past spaces of a stationary stochastic process, and introduce two predic-
tor spaces in terms of the orthogonal projection of the future onto the past, and vice
versa. Based on these predictor spaces, we derive forward and backward innovation
representations of a stationary process. We also discuss a stochastic balanced realiza-
tion problem based on the CCA, including a model reduction of stochastic systems.
Finally, presented are subspace algorithms to obtain stochastic state space models
based on finite observed data. Some numerical results are included.

8.1 Canonical Correlation Analysis

The canonical correlation analysis (CCA) is a technique of multivariate statistical
analysis that clarifies the mutual dependence between two sets of variables by finding
a new coordinate system in the space of each set of variables.

Let z and y be two vectors of zero mean random variables defined by

T Y1

T2 & Y2 .
rz=| .| eR", Yy = eR

Tk Ui

Let the linear spaces spanned by x and y respectively be given by
X:Span{mla 7mk}a Y:Span{yla 7ml}

First, we find vectors w; € X and z; € Y with the maximum mutual correlation, and
define (w1, 21) as the first coordinates in the new system. Then we find wo € X and
z2 € Y such that their correlation is maximum under the assumption that they are
uncorrelated with the first coordinates (w1, z1). This procedure is continued until
two new coordinate systems are determined.
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Let the covariance matrices of two vectors x and y be given by

Eym vy

where it is assumed for simplicity that X,, > 0 and X'y, > 0. Also, without loss of
generality, we assume that k£ < [. We define two scalar variables

k l
T T
w, = a x:E Q;x;, z1=25> y:E Biy;
i=1 j=1

by using two vectors a € R* and b € R, respectively. We wish to find the vectors a
and b that maximize the correlation between w; and z;, which is expressed as

B covi{alz, bly} _ at X.,b
P Veov{aTz}/cov{bTy}  /(aT Zy.a) (b1 X,,b)

Note that if a pair (a, b) maximizes p, then the pair (¢ a, ¢2b) also maximizes p for
all non-zero scalars c;, co. Thus, we impose the following conditions

atY.a =1, brY,,b=1 (8.2)
The problem of maximizing p under the constraint of (8.2) is solved by means of
the Lagrange method. Let the Lagrangian be given by

1 1
L=a"%,b+ 2,\1(1 —a'¥,.a) + 2,\2(1 -0t 3,,b)

Then, the optimality conditions satisfied by the vectors a and b are

oL oL

0 = b= MEma=0, o =S.a-deTb=0 (83

Pre-multiplying the first equation of (8.3) by a' and the second by b and using
(8.2), we have
at b =0"Ta =\ = o

Letting Ay = Ay = p, it follows from (8.3) that
Yoy — pXiza =0, Yyza — pXyyb=0 (8.4)
Since Yy, > 0, we can eliminate b from the above equations to get
(Ley Xy} Xya — P*Eaz)a=0,  a#0 (8.5)

This is a GEP since X, # I.
We see that a necessary and sufficient condition that a has a non-trivial solution
is given by
det(Xoy X' Xy0 — p*Xae) =0 (8.6)
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where this is a kth-order polynomial in p? since det(X,.) # 0. Let square root
matrices of X, and X, respectively be 2;42 and 211,{,2, satisfying

_ y1/2yT/2 _ y1/2yT/2
Tae = Z325T/ Zyy = Zi2x

xx

It therefore follows from (8.6) that
det (2;;/ DN Sited Sl YR St p21k) =0

Define = := ;z1/22$yE;yT/2 € R**!, Then, we have
det(Z2T — p’I) =0 (8.7)

This implies that p? is an eigenvalue of ZZT € R***, and that k eigenvalues of
ZET are nonnegative. Let p; > ps > --- > pi, > 0 be the positive square roots
of the eigenvalues of = E7T, and let ai, as, -+, ar € R" be the corresponding
eigenvectors obtained from (8.5). Then, we define the matrix

L=1[a; ay --- a;] € R***
Similarly, eliminating a from (8.4) yields
(Zye Xt Doy — p*Eyy)b=0,  b#0
and hence
det( Dy, Xt Yoy — p* Xyy) =0 (8.8)

Since ¥, > 0, (8.8) is equivalent to det (ST = — p?I;) = 0. Since Z7=Z € R is
nonnegative definite, it has [ nonnegative eigenvalues. Let p; > po > --- > p; >
0 be the positive square roots of the eigenvalues of ZTZ!. Let the corresponding
eigenvectors be given by by, by, -+, b € R!, and define the matrix

M=[b by --- b] R

Definition 8.1. The maximum correlation p; is called the first canonical correlation.
In terms of corresponding two vectors ay and by, we have two scalars

T T
wy = aq T, z1:=bjy
These variables are called the first canonical variables. Similarly, p; is called the ith
canonical correlation, and w; = a?x and z; = b?y are the ith canonical variables.

Also, two vectors w = LTz and z = MTy are called canonical vectors. O

The following lemma shows that L and M are the square root inverses of the
covariance matrices X, € R¥** and ¥, € R, respectively.

!Since nonzero eigenvalues of 55T and ZT 5 are equal, we use the same symbol for
them.
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Lemma 8.1. Let L and M be defined as above. Then, we have
L'Y,.L =1, MYy, M =1, (8.9)

and
P1

P2
L'S,,M =D = , 0 e RFX! (8.10)
Pk

where1 > p1 > -+ > py > 0.

Proof. We prove (8.9) under the assumption that p; # p; for i # j. Let (a;, b;)
and (aj, b;) be pairs of eigenvectors corresponding to p; and p;, respectively. From
(8.5), we have

-1 _ 2 ) -1 2 ]
Ewyﬂyy et = p; Yo, Ewyﬂyy Yyaa; = Pj PO

Pre-multiplying the first and the second equations by a}f and a, respectively, and
subtracting both sides of resulting equations yield

Thus we see that a]TZ'mai = 0,7 # j. In view of (8.2), this fact implies that
L'Y,.L = I),. We can also prove M T X, , M = I, by using b; and b;.
It follows from (8.4) that X, b; = p; X;,a;. Pre-multiplying this equation by a}
yields
aj Saybi = pia] Tozi = pi

Similarly, pre-multiplying X,,b; = p; X,.a; by a;f (j # 1) gives
al Yoybi = pia] Xooa; =0,  j#i

These equations prove (8.10).

Finally we show that p? < 1. Let 6 be a scalar, and consider

det (azm (Do — Z‘wyZ‘;;Z‘W)) —0
Since Y., > 0Oand X, — Ewyﬂy_ylz‘yz > 0, we get § > 0. This can be proved

by using the technique of simultaneous diagonalization of two nonnegative definite
matrices. Thus, we have

det((1 = 6) Zow = Zay ¥y, ya ) = 0

Comparing this with (8.6) gives § = 1 — p> > 0, and hence p? < 1. O
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Letw = LTz and z = MTy. Then, we see from Lemma 8.1 that
E{ww'} = I, E{z2T} =1,

and
P1

E{wz'}=D = P N 0 (8.11)

Pk

The elements of canonical vectors w and z, which are respectively obtained by linear
transforms of x and y, are white noises with mean zero and unit variance, and they
are arranged in descending order of mutual correlations as shown in Table 8.1. Thus,
both whitening and correlating two vectors can be performed by the CCA.

Table 8.1. Canonical correlation analysis

w1 pP1 \ 21
LT . : . MT
e PN Pk | — vy
21
We see from (8.7) that the canonical correlations p; > ps > --- > pg are the

singular values of =, so that they are computed as follows.

Lemma 8.2. Suppose that the covariance matrices of x and y are given by (8.1).
Then, the canonical correlations are computed by the SVD

E=x.75,z M =UDV" (8.12)
where D is defined by (8.11). Also, the canonical vectors are given by
w=L"s= UTE;;/%, z2=M"% = VTE;yl/Qy

Proof. It follows from (8.12) that (UTZ';xl/z)Ew(Ey_yTﬂV) = D. Comparing
this with (8.10) gives the desired results. O

8.2 Stochastic Realization Problem

We consider the same stochastic realization problem treated in Chapter 7. Suppose
that {y(t), t = 0, £1, --- } is a regular full rank p-dimensional stationary process.
We assume that the mean of y is zero and the covariance matrix is given by
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A(l) = E{y(t+)y* ()}, 1=0,%£1, - (8.13)

Suppose that the covariance matrices satisfy the summability condition

> A < oo (8.14)

l=—

Then, the spectral density matrix of y is defined by

= > Azt (8.15)

l=—0c0

Given the covariance matrices (or equivalently the spectral density matrix) of a
stationary process ¥, the stochastic realization problem is to find a Markov model of
the form

z(t+1) = Az(t) + w(t) (8.16a)
y(t) = Cx(t) + v(t) (8.16b)

where x € R" is a state vector, and w € R™ and v € RP are white noises with mean
zero and covariance matrices

s{[ v | wre o) = | & 5o 8.17)

In the following, it is assumed that we have an infinite sequence of data, from which
we can compute the true covariance matrices.
Let ¢ be the present time. Define infinite dimensional future and past vectors

(y(t)) ygt—lg
t+1 t—2
=" =T

Then, the cross-covariance matrix of the future and past is given by
A(1) A(2) A(3) ---

A(2) A(3) A4) -
H =E{f(t)p* ()} = | A(3) A(4) A(5) - -- (8.18)

and the covariance matrices of the future and the past are respectively given by

A(0) AT(1) AT(2) --
T A1) A0) AT(1) -
Ty = E{f@f ) = | A(2) (1) A(o) (8.19)
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e A(0) A(1) A2) ---
AT(1) A0) AQ1) ---
T- = B{pt)p" ()} = | AT(2) AT(1) A(0) -- (8.20)

It should be noted that H is an infinite block Hankel matrix, and 7'y are infinite block
Toeplitz matrices.

Let Y = span{y(t) | t = 0, £1, --- } be a Hilbert space generated by all the
linear functionals of the second-order stationary stochastic process y. Let Y7 and Y,
respectively be linear spaces generated by the future f(¢) and the past p(t), i.e.,

y?_ = Span{y(t), y(t + 1): T }7 Y = Span{y(t - ]-)7 y(t - 2)7 e }

We assume that these spaces are closed with respect to the mean-square norm, so
that H;r and Y, are subspaces of the Hilbert space Y.

8.3 Akaike’s Method

In this section, we shall study the CCA-based stochastic realization method due to
Akaike [2,3].

8.3.1 Predictor Spaces

A necessary and sufficient condition that y has a finite dimensional stochastic real-
ization is that the Hankel matrix of (8.18) has a finite rank, i.e., rank (H) < oc. In
order to show this fact by means of the CCA technique, we begin with the definition
of forward and backward predictor spaces.

Definition 8.2. Let the orthogonal projection of the future Y; onto the past'Y; be
defined by

o= B{YF 197} = span{ B{y(t+ 1) | Y7} h=0,1, -}
:span{g(t+h|t—) |h=0,1, }
And, let the orthogonal projection of the past Y onto the future Y be given by

o= B{Y7 |95} =soan{ E{y(t— 1) | ¥} [1=1,2, -}

Spaﬂ{ﬂ(t—l|t+)|l:1, 2}

Then the spaces X, and X, are called the forward and the backward predictor spaces,
respectively. O
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The generators §(t + h | t—) of the forward predictor space are the minimum
variance estimates of the future y(t+h), h = 0, 1, - - - based on the past Y; , and the
generators §(t — I | t+) of the backward predictor space are the minimum variance
estimates of the past y(t — 1), 1 = 1, 2, --- based on the future Y; . The notations
g(t+ h | t—) and (¢t — I | t+) are used in this section only; in fact, the optimal
forward estimates should be written as §(¢ + h | t — 1) by using the notation defined
in Chapter 5.

The optimality conditions for the forward and backward estimates are that the re-
spective estimation errors are orthogonal to the data spaces Y; and Y;", respectively.
Thus the optimality conditions are expressed as

E{[y(t+h) — gt +n| t—)]yT(t—l)} -0
nd
) E{[y(t—z)—g(t—z|t+)]yT(t+h)}:o
where h=0,1,---andl =1, 2, ---.

Lemma 8.3. Suppose that rank(H) < oo. Then, the two predictor spaces Xy and
Xy are finite dimensional, and are respectively written as

X, =span{g(t+h|t=)|h=0,1,-+,r—1}

and 5
X, :span{gj(t—l|t+) |l: 1,2, r}
where r is a positive integer determined by the factorization of given covariance
matrices {A(k), k=1,2,---}.
Proof. Since rank(H) < oo, the covariance matrix A(k) has a factorization given

by (7.7). Thus it follows from Theorem 3.13 that there exist an integer r > 0 and
scalars a1, - -- , a, € R such that

Ar+k)+ Y oidr+k—i)=0, k=12 (8.21)
=1

This is a set of linear equations satisfied by the covariance matrices. From the defi-
nition of covariance matrices, it can be shown that (8.21) is rewritten as

E{[y(t+r+h)+i:az’y(t+r+h—i)]yT(t—l)}:0 (8.22)
and .
E{[y(t—r—l)+Zaz’y(t—r—l+i)]yT(t+h)}:0 (8.23)

where h =0, 1, --- and [ =1, 2, ---. We see that (8.22) is equivalent to
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E{y(t+r+h)+i:aiy(t+r+h—i)‘H;}ZO, h=0,1,---
i=1
so that we have
gt+r+h|t-) :—iaig(t+r+h—i|t—), h=0,1,--- (8.24)

i=1

Similarly, from (8.23),
E{y(t—r—l)—l—Zaw(t—r—l—i)‘Hf}:o, 1=1,2,---
i=1
This implies that

glt—r—=1]t+) = Zalyt—r—l+z|t+) 1=1,2,--- (825

=1

From (8.24) and (8.25), we see that the predictor spaces X; = E{H | Y7 } and
X, = E{Ht | Y5} are finite dimensional, and the former is generated by the forward
predictors §(t + h | t—) = E{y(t + h) | Y b h=0,1, — 1, and the latter
the backward predictors (¢t — 1 | t+) = E{y(t — 1) | Y/ } l= 1 2, O

In the above lemma, the positive integer 7 may not be minimum. But, applying
the CCA described in Section 8.1 to the following two vectors

(@(Ht—)) gt —1]t+)
g(t+1 | t— . y(t—2|¢
g | FEHTIE) | fa21e)

gt+r—1]t-) gt —r | t+)

we obtain the minimal dimensional orthonormal basis vectors z(t) and Z(t) for the
predictor spaces X; and X;, respectively. Being orthonormal, we have cov{z(t)} =
I, = cov{@(t)}. It should be noted that since y(t) is a stationary process, z(t) and
Z(t), the orthonormal bases of X; and X, are jointly stationary.

For the transition from time ¢ to ¢ 4+ 1, we see that the predictor space evolves
from X; to Xyy1 = E{‘ét+1 | Y 1} Since Y, = Y; V span{y(t)}, the space
Y;11 has the orthogonal decomposition

Yy =Y; @ span{y(t)} (8.26)

where §(t) := y(t) — g(t | t—) is the forward innovation for y(t). Thus, it follows
that

xtJrl E{yt+1 | yt+1} E{yt+1 | Ht_ @ Span{g(t)}}
= E{HtJrl | ¥ }+ E{le span{y(t)}}
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Since Y, C Y, we see that E{Y,, | Y, } C X;. Hence, the first term in the
right-hand side of the above equation gets smaller than X;, but by the addition of
new information (), a transition from X; to X;; is made.

Definition 8.3. [105] Suppose that a subspace 8; (C Y; ) satisfies
E{YS 18} = E{Y] 1Y, }
Then, 8 is called a splitting subspace for (Y}, Y;7). O

Lemma 8.4. The predictor space X, = E{Y;} | Y7} is a minimal splitting subspace
Jor (45, 7).

Proof. We note that X; = E{xt | X;} and X, C Y, hold. It thus follows from the
property of orthogonal projection that

BUYS 1Y} =% = E{X, | X} = B{E{Y/ | Y, } | X}
= E{Y | X}

The last equality implies that X; is a splitting subspace for (4,7, Y, ). Also, it can be
shown that if a subspace §; of Y, satisfies

BT 18} =B ¥}
then we have 8; D X;. Hence, X; is the minimal splitting subspace for (Y;", Y;). O

This lemma shows that X; contains the minimal necessary information to predict
the future of the output y based on the past Y, . We can also show that the backward
predictor space X; = E{Y; | Y;} is the minimal splitting subspace for (Y7, Y;),
contained in the future Y. Thus, two predictor spaces defined above can be viewed
as basic interfaces between the past and the future in stochastic systems. It will be
shown that we can derive a Markov model for the stationary process y(t) by using
either Z(t) or z(t).

8.3.2 Markovian Representations

The stochastic realization technique due to Faurre considered in Section 7.3 is based
on the deterministic realization method that computes (4, C, C', A(0)) from the
given covariance matrices and then finds solutions (II > 0, @, R, S) of LMI (7.26).
On the other hand, the method to be developed here is based on the CCA technique,
so that it is completely different from that of Section 7.3. By deriving a basis vector
of the predictor space by the CCA, we obtain a Markov model with a state vector
given by the basis vector.

We first derive a stochastic realization based on the basis vector Z(t) € X;. Recall
that Z(¢) has zero mean and covariance matrix I,,.
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Theorem 8.1. In terms of the basis vector #(t) € Y, a Markov model for the
stationary process y is given by

B(t+1) = A#(t) + w(t) (8.27a)
y(t) = Cz(t) + () (8.27b)
where A € R**", C € RP*™, C' € RP*™ satisfy
A=E{it+ 1)z ()}
C = E{y(t)i" (1)} (8.28)
C = E{yt)z"(t+1)}

Also, W and ¥ are white noise vectors with mean zero and covariance matrices

o{[25 w0 )= 8]

where cov{z(t)} = II = I,,, and
Q=1,— AAT, S=C"-ACT, R=A0)-cCCT (8.29)

Proof. 1° Let the basis vector of X; be given by i(t). Since X; = E{Ht_ | HZL} C
Y7, we see that Z(t) is included in Y; . Also, we get #(t + 1) € Y/, C Y/ . Hence,
we can decompose Z(¢ + 1) as the sum of orthogonal projections onto span{i(t)}
and its complementary space (span{#(t)})* NY;, ie.,

Et+1) = E{&@t+1)| &)} + E{&@t+1) | (span{&(t)})* NnY}}
The first term in the right-hand side of the above equation is expressed as
Ba(t+1) | #(t)} = B{a(t + 12" (0)}(E{z(0)" (1)) &(t) = Az(1)

Define w(t) := &(t + 1) — AZ(t). Then, w(t) € Y;, but w(t) L X;. We show
that () is orthogonal to Y, . Let £ € Y, . Then, we have E{¢ | Y} € X;. Also,
by definition, £ — E{¢ | Y7} L Y, and hence & — E{¢ | Y/} L w(t). Since
E{€| Y#} L w(t), we obtain £ L w(t) for any £ € Y7 . This proves the desired
result.

Thus, w(t + 1) is orthogonal to Y, ;. Since ¥, C Y,,;, 1 = 0,1, ---, we see
that w(t + 1) L Y, holds. However, since w(t + 1) € Y;, it follows that w (¢ + [) is
orthogonal to Z(t), implying that

w(t+1) L), y(t—1), 1=01,- (8.30)
2° Since y(t) € Y, and X; C Y;', the output y(¢) has a unique decomposition

y(t) = E{y(t) | span{&(t)}} + E{y(?) | (span{z(t)})*" N Y}
= Ci(t) + 0(t)
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This shows that (8.27b) holds. By the definition of ©(¢), we have o(t) € Y and
0(t) L X;. As in the proof of w(t) L Y, in 1°, we can show that v(¢t) L Y, , and
hence o(t+ h) L Y;, h =0, 1,---. Moreover, since 0(t + h) € 13t++h C Y/ holds,

it follows that ©(t+h) is orthogonal to X; = E{Y; | Y/ }.i.e., o(t+h) L &(t), h =
0, 1,---. This implies that

o(t+1) L&), y(t—-1), 1=0,1,--- (8.31)
3° We see from (8.30) that
E{wt+ )™ ()} = E{wt+)[zt+1) - Az@®)] "} =0, 1=1,2, -

This implies that w is a white noise. Also, it follows from (8.31) that ¥ is a white
noise. Again, from (8.30) and (8.31), we have

E{o(t+D)wr (1)} = E{o(t + 1)[2(t + 1) — Az (1)]*} =0, 1=1,2,---
and
E{wt+0)oT(t)} = E{w(t +D[y(t) - Cz(t)]*} =0, 1=1,2,---

This shows that (w, ©) are jointly white noises.
Finally, it can be shown from (8.28) that

Q= E{[z(t+1 [ +1) — Az()]*} = I, — AAT
S =E{[z(t+1 Oyt) — Czt)]"} =CT — ACT
R = E{[y(t) - Cx(t)][y(t) — Cz(t)]"} = A(0) - CCT

) — Az(t)
) — A (t)

This completes the proof of (8.29). O

We now show that the orthogonal projection of (8.27a) onto Y, , ; yields another
Markov model for y. It should be noted that projecting the state vector of (8.27a)
onto the past Y, , is equivalent to constructing the stationary Kalman filter for the
system described by (8.27).

Since E{Y;" | Y; } = X; = span{z(t)}, we see from the proof of Lemma 8.4
that

E{Yf 197} = B{Y7 | X} = E{Y/ | span{z(t) }

Thus, noting that () € Y;, it follows that
E{z(t) | Y7} = E{2(1) | 2(1)}
= B0 OB 0D at) = To() (8.3

where 7' = E{#(t)z" (t)} = diag(p1, p2; =+~ , pn)-
The next theorem gives the second Markovian model due to Akaike [2].
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Theorem 8.2. In terms of z(t) = Yx(t) € Y, , a Markov model for y is given by

z(t+1) = Az(t)

Az(t) + w(?) (8.33a)
y(t) = Cz(t)

+
+o(t) (8.33b)

where the covariance matrices satisfy cov{z(t)} = I = 1? and
Q=72 -AT*AT, S=CT-AY*CY, R=A0)-CT?Ct (8.34)
Proof. Similarly to (8.32), we have
E{i(t+1)|Yg, ) =Tt +1) = 2(t + 1)

By using the orthogonal decomposition Y, ; = Y, @ span{7(t)} defined in (8.26),
we project the right-hand side of (8.27a) onto Y, ; to get

2(t+1) = B{Ai(t) + w(t) | Y1}
= BE{Az(t) + (1) | Y; @ span{j(t)}}
= E{A#(t) + (1) | Yy } + E{a(t + 1) | §(1)}
From (8.32) and the fact that w(t) L Y, , the first term in the right-hand side of the

above equation becomes E{Az(t)+w(t) | Y; } = Az(t). Defining the second term
as w(t) := E{z(t + 1) | §(t)}, we have (8.33a). Since y(t) € Y, ,, it has a unique
decomposition

+
= E{C&(t) + o(t) | Y; @ span{ji(t)}}
+o(t) | Y7+ E{y(t) | 9(t)}

where we see that E{o(t) | Y;} = 0 and E{y(t) | §(t)} = §(t). Hence, defining
7(t) = v(t), we have (8.33b). We can prove (8.34) similarly to (8.29). O

Since w(t) := E{#(t + 1) | §(t)} belongs to the space spanned by v(t) = §(t),
we have

E{w(t) | v(t)} = E{w(t)o" () }(E{o(t)T ()}) " () = SR~ u(t)
Thus, by putting K = SR, the Markov model of (8.33) is reduced to
z2(t+1) = Az(t) + Ko(t) (8.35a)
y(t) = Cz(t) + v(t) (8.35b)
This is the stationary Kalman filter for the system described by (8.27), since

2(t) = E{&(t) | ¥, } = Ta(t)
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is the one-step predicted estimate of the state vector &(t). Also, the state covariance
matrix of (8.35a) is given by E{z(t)zT(t)} = II = T2, and the error covariance
matrix is given by P := E{[#(t) — z(t)][(t) — 2(¥)]*} = T — 7%

We see that the Markov model of (8.27) is a forward model with the maximum
state covariance matrix (II = I,,) for given data (A4, C, C, A(0)), while the forward
Markov model of (8.33) has the minimum state covariance matrix (I = 72).

8.4 Canonical Correlations Between Future and Past

In this section, we consider the canonical correlations between the future and the past
of the stationary stochastic process y of (8.16). To this end, we recall two AREs asso-
ciated with the stationary Kalman filter (5.75) and the stationary backward Kalman
filter (5.88), i.e.,

Y =AXAT + (O - AZCY)(A(0) —CcxCt)yH(C - CxAY) (8.36)
and
T=AT2A+ (" - ATECTY(A(0) = CECT)H(C - CEA) (8.37)

It is easy to see that the stabilizing solution X' of (8.36) is equal to the minimum
solution (2., = I, which is computable by Algorithm 2 of Subsection 7.4.2, and
hence we have X' = II,, the minimum solution of (7.37). But, the stabilizing solution
X of (8.37) is equal to the minimum solution 2., = (II*)~!, which is computable
by Algorithm 1, so that we have X' = (II*)~!. Therefore, in terms of stabilizing
solutions X and X, the inequality of Theorem 7.4 is expressed as

ry<m<xt

In the following, we show that the square roots of eigenvalues of the product XX
are the canonical correlations of the future and the past of the stationary process y.
This is quite analogous to the fact that the Hankel singular values of a deterministic
system (A, B, C) are given by the square roots of the eigenvalues of the product of
the reachability and observability Gramians (see Section 3.8).

Theorem 8.3. The canonical correlations of the future and the past of the station-
ary process y are given by the square roots of eigenvalues of the product X' X. If
rank(H) = n, then the canonical correlations between the future and the past are
given by (01, -+« , 05, 0,---, 0).

Proof. Define the finite future and past by

y(t) y(t—1)
y(t+1) y(t —2)

it +k—1) Yt — k)

fe(t) =
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and also define Hy, . := E{fr(t)pf (t)}, T4 (k) := E{fe(t)fL(t)} and T_ (k) :=
E{pi(t)pf (t)}. Then, we see that

lim Hy = H, lim Ty (k) =Ty, lim T (k) =T-
k—o0 k—o0 k—o0
From Algorithm 1 of Subsection 7.4.2, it follows that
2=t =0 = lim 2 = lim O, T7" (k)0
k— o0 k— o0
Also, from Algorithm 2,
Y=1I, =02, = lim 2 = lim T '(k)C}
k— o0 k—o0
Let the Cholesky factorization of block Toeplitz matrices be T'y (k) = Ly L} and
T_(k) = M M. Then it follows that
N2k 2y) = MCT- (k) CLOLT (k) Ok)
= A(M M) Hy (L Lyy) " Hi 1)

= M7 Hea T (L7 Hia M7 ™)) = 0 (L7 B M)

where Hy, ;. = 04,C, and A(AB) = A(BA) except for zero eigenvalues are used. It
follows from Lemma 8.2 that the singular values of L,;lH ke My T are the canonical
correlations between [ (t) and pi (¢). Thus taking the limit,

MNZE) = Jim M2, 2,) = Jim o (L Hy My Y) =o*(L'HM™T)
c—00 c—00
where L and M are respectively the Cholesky factors of the matrices 7', and 7.

Thus we see that the square root of the ith eigenvalue of ¥ % equals the ith canonical
correlation between the future f(¢) and past p(t), as was to be proved. O

8.5 Balanced Stochastic Realization

In this section, we consider a balanced stochastic realization based on the CCA.
From the previous section, we see that in the balanced stochastic realization, the
state covariance matrices of both forward and backward realizations are equal to the
diagonal matrix X' = diag(o1, - -+ , on); see also Definition 3.9.

8.5.1 Forward and Backward State Vectors

We assume that rank(H) = n. Let the Cholesky factorization of block Toeplitz
matrices 7'y and T, defined by (8.19) and (8.20), be givenby Ty = LLT and T_ =
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MMT, respectivelyz. Then, as shown above, the canonical correlations between the
future and past are given by the SVD of the normalized H, i.e.,

L'"HM T =UuxvT

so that we have
H=LUXV'M* (8.38)

From the assumption that rank(H) = n, it follows that ¥' = diag(oy, --- , 04),
1>01> - >0,>0,andUTU =1,,, VIV = I,.
According to Lemma 8.2, we define two n-dimensional canonical vectors

at) :=VIM™'p(t),  B(t):=UTL™f(t)
Then, it can be shown that E{a(t)at (1)} = E{B(t)3* ()} = I,,, and

E{Bt)a*(t)} = diag(a1, -+, o)

Thus we see that (o1, - -+ , 0,,) are canonical correlations between f(t) and p(¢).
It therefore follows that the orthogonal projection of the future f(¢) onto the past
Y, is expressed as

E{f(t) 1Y, } = E{/ 0" ()} E{p(t)p" (1)})"p(t) = HT'p(t)
= LUSVIMT(MM™Y) 1p(t) = LU Xa(t) (8.39)

Hence, we see that the canonical vector a(t) is the orthonormal basis of the forward
predictor space X; = E{Y;" | Y; }. Similarly, the orthogonal projection of the past
p(t) onto the future space Y;” is given by

E{p(t) | Y} = H' T f(t) = MV ZB(t) (8.40)

This implies that the canonical vector B(t) is the orthonormal basis of the backward
predictor space X; = E{Y; | Y, }.
Let the extended observability and reachability matrices be defined by

O:=LUX'Y?, C:=x12yTyT (8.41)
Then, from (8.38), the block Hankel matrix H has a decomposition
H = (LUSY?)(ZV2vT M"Y = o¢ (8.42)

where rank(0) = rank(C) = n.
Let x(t) and 2 (¢t — 1) respectively be given by

z(t) == X' 2a(t) = T p(t) (8.43)

’Since H, T, T are infinite dimensional, it should be noted that the manipulation of
these matrices are rather formal. An operator theoretic treatment of infinite dimensional ma-
trices is beyond the scope of this book; see Chapter 12 of [183].
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and
zp(t — 1) := SV2B(t) = OTTT () (8.44)

The former is called a forward state vector, and the latter a backward state vector. By
definition, we see that

E{z(t)z* ()} = ¥ = B{ay(t — Daf (t — 1)} (8.45)
It follows from (8.41) and (8.43) that (8.39) is rewritten as

B{f(t)|Y; } = 0x(t) (8.46)

This implies that the past data necessary for predicting the future f(¢) is compressed
as the forward state vector z(t). Similarly, from (8.44), we see that (8.40) is ex-
pressed as .

E{p(t) | ¥} = €Tas(t — 1) (8.47)

so that z; (¢t — 1) is the backward state vector that is needed to predict the past p(t)
by means of the future data.

In the next subsection, we show that a forward (backward) Markov model for the
output vector y is derived by using the state vector z(t) (z(t — 1)). From (8.45),
it can be shown that the state covariance matrices of both forward and backward
Markov models are equal to the canonical correlation matrix, so that these Markov
models are called balanced stochastic realizations.

8.5.2 Innovation Representations

We derive innovation representations for a stationary process by means of the vectors
z(t) and x,(t — 1) obtained by using the CCA, and show that these representations
are balanced.

Theorem 8.4. In terms of the state vector defined by (8.43), a forward innovation
model for y is given by

z(t+1) = Az(t) + Ke(t) (8.48a)
y(t) = Cx(t) + e(t) (8.48b)

where e is the innovation process defined by
e(t) = y(t) - E{y(t) | ¥, } (8.49)

which is a white noise with mean zero. Moreover, it can be shown that the matrices
A, C, C", K, R are given by
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A=ecet =ofo!

=y V2UuTLtHe M TV /2 e R (8.50)
C=0(1:p,1:n)e R*" (8.51)
CT=e(1:n,1:p) e R™>P (8.52)
R = A(0) —CXCT € RP*P (8.53)
K= (C" - AXCT")R™' e R™*P (8.54)

where (1) and ()1 denote the operations that remove the first block column and the
first block row, respectively. Also, X is a stabilizing solution of the ARE

Y =AXAT + (O — AxC")(A(0) —cxCch)HCT — AxCTT  (8.55)

and A = A — KC is stable.
Proof. 1° Define w(t) as

w(t) =zt +1) — E{z(t+1) | z(t)} (8.56)
By the definition of orthogonal projection,
E{a(t+1) | 2(t)} = B{z(t + D" ()} Efz(t)z" (1)}) "a(t) = Ax(t)
where, from (8.43),
A=CT'E{p(t+1)p )} r-teTx!

Also, by the definition of p(t), it can be shown that

A1) A(2) A@3) -
A(0) A(1) A(2) -
E{p(t+1p" (1)} = | AT(1) A(0) AQ) --- | =T

From the decomposition T = M M™, we have T+ = M(M™')*, so that
A=CMMH MMy (MM ety
=2y MT (MM MM (MM MY S 2 et
=22V Mty C(MT)Ttv 2 = ecet = ofo! (8.57)

The last equality in the above equation is obtained from OC = OT€ of Theorem
6.1 (iv). Moreover, we see from (8.38) that Y~*/2UTL1H = x1/2VTMT, 5o that

E—l/QUTL—lH% — El/QvT(MT)(—
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Thus, we have (8.50) from (8.57).
2° From (8.42) and (8.43),

E{y(t) | Y7} = E{y®)p" (O} E{pt)p" (1)) 'p(t
=E{y®ly"(t-1) yT(t=2) - HT-)"'p(t)
=[4(1) A@2) - [(T-)"'p() = H
= O(1:p, 1 )€1, ) (T )
=0(1:p,1:n)z(t) = Cx(t)

~

Thus, we see that (8.48b) and (8.51) hold. Suppose that [ > ¢. Since
e()=y() = Cx(l) LY, x(t)eY, CY

we have e(l) L z(t),l = t,t+ 1, ---, implying that e(¢) is a white noise. Also,
computing the covariance matrices of both sides of (8.48b) yields (8.53).
3° From (8.43) and (8.56), we have

w(t) =zt +1) - Az(t) € Y, 4, w(t) LY,

and Y, , =Y, @ span{e(t)}. Thus, w(t) belongs to span{e(t)}. This implies that
w(t) can be expressed in terms of the innovation process e(t), so that

w(t) = B{w(®) | e(t)} = B{w(t)e™ ()} R~"e(t) = Ke(t)

However, since w(t) L z(t), we get

E{w(t)e' (1)} = E{w(t)ly(t) — Cz(t)]"} = E{w(t)y" (1)}
Hence, from (8.43) and (8.56),

E{w(t)e (1)} = E{[CTZ'p(t + 1) — Az(t)]y" (1)}
=CT'E{p(t + )yT(t)} — AE{z(t)[Cx(t) + e(t)]"} (8.58)
From the definition of 7_, the first term in the right-hand side of the above equation
becomes
A(0) 1,
e E{p(t + 1)y "y =ert |41 | =¢| 0

=C(:,1:p) =07

Also, the second term of (8.58) is equal to AXCT, so that we have (8.54) and
(8.52). Thus the state equation (8.48a) is derived. Moreover, computing the covari-
ance matrices of both sides of (8.48a), we get the ARE (8.55). Finally, the stability
of Ay = A — KC follows from Lemma 5.14; see also Theorem 5.4. O
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We see that the stochastic realization results of Theorem 8.4 provide a forward
Markov model based on the canonical vector «(t). We can also derive a backward
Markov model for the stationary process y in terms of the canonical vector 3(t).

Theorem 8.5. By means of the state vector defined by (8.44), we have the following
backward Markov model

zy(t —1) = ATz (t) + K ey (t) (8.59a)

y(t) = Cxp(t) + es(t) (8.59b)
where the innovation process ey, defined by

eo(t) = y(t) — E{y(t) | Y71}

is a white noise with mean zero and covariance matrix R, where R and KT are
respectively given by

R=A(0) - CxCT ¢ Rw*P (8.60)
and ~ o

K'Y=t - A" SCHR e R (8.61)
Moreover, the covariance matrix X for the backward model satisfies the ARE

Y=ATxA+ (" - AT2CT)(A(0) - CECT) N (C - O A) (8.62)

and AT — KTC is stable.

Proof. We can prove the theorem by using the same technique used in the proof of
Theorem 8.4, but here we derive the result from (8.44) by a direct calculation. From
the definition of 7', and (8.44),

zp(t— 1) =0TT 1 f(?)

A(0) COT

_ [T AT@T (
=[C AO][OCT T

L] e

The inverse of the block matrix in (8.63) is given by

A(0) CoT
oct T,

v -VeorT!
-T7'octv Tt Totoctveot T

where, from (8.45),
V= (4(0) - COTTTOCT) ™! = (A(0) - CxCT) !
Thus, computing the right-hand side of (8.63) yields
zp(t — 1) = (CT — ATOTT ' OCT)Vy(t) + ATOTT f(t + 1)

+AToTT roCTVeOT T  f(t+ 1) - CTVCOTT  f(t + 1)
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By using OTT 'O = L and OTT ' f(t + 1) = x(¢),
zp(t —1) = ATz (1) + (C7 — ATZCTWVy(t) — C (1)

Define R and KT as in (8.60) and (8.61), respectively. Then, we immediately obtain
(8.59a). Also, we see from (8.47) that

E{p(t+1) | Y1} = €Tay(2)

From the first p rows of the above expression, we get E{y(t) | Y51} = Cx(t),

so that we have (8.39b). By definition, e;(t) L 13t++p and hence e;(t) L 13t++z for

1=1,2,---. Also,since z;(t + 1) € 13t++z forl =1, 2, ---, it follows that
E{ey(t)ef (t+1)} = E{es(t)[y(t +1) — Cxp(t +1)]T} =0

holds forl =1, 2, - - -, implying that e; is a backward white noise. Thus, its covari-
ance matrix is given by (8.60). Finally, computing the covariance matrices of both
sides of (8.59a) yields (8.62). O

The state covariance matrices of two stochastic realizations given in Theorems
8.4 and 8.5 are equal and are given by cov{z(t)} = X = cov{z,(t — 1)}. Also,
two AREs (8.55) and (8.62) have the common solution X', a diagonal matrix with
canonical correlations as its diagonals. It follows from Algorithms 1 and 2 shown
in Subsection 7.4.2 that X' is the minimum solution of both AREs. Thus, two sys-
tems defined by (8.48) and (8.59) are respectively the forward and backward Markov
models for the stationary process y with the same state covariance matrix. In this
sense, a pair of realizations (8.48) and (8.59) are called stochastically balanced.

8.6 Reduced Stochastic Realization

In Sections 4.8 and 7.2, we have introduced a backward Markov model as a dual of
the forward Markov model.

In this section, we first derive a forward Markov model corresponding to the
backward model of (8.59). This gives a forward model for the stationary process y
with the maximum state covariance matrix X* = X!,

Lemma 8.5. Let z*(t) := X~ lxy(t — 1). Let the state space model with x*(t) as
the state vector be given by

' (t+1) = Az*(t) + K*e"(¢) (8.64a)
y(t) = Cz*(t) + e*(¢) (8.64b)

Then, the above realization is a forward Markov model with cov{z*(t)} = X1,
which satisfies the ARE
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Yl = AT AT 4 (CT - Ax~iCT)
x (A(0) —Ccxtch)y YO -oxtAT) (8.65)

Also, the covariance matrix of e* and the gain matrix K* are respectively given by

R* = A(0) —cx 1ot (8.66)

and B
K*=(CT — AX~'1C")(R*)™! (8.67)
Proof. A proof is deferred in Appendix of Section 8.11. O

We see that (8.65) is the same as (8.55), and X~ and X! are respectively the
minimum and maximum solution of the ARE. Since the elements of the diagonal
matrix X are the canonical correlations between the future and the past, they lie
in the interval [0, 1]. By assumption, we have o,, > 0, so that if oy < 1, then
Y~1 — ¥ > 0 holds. It therefore follows from Theorem 7.5 (ii), (iii) that

AK ::A—KC

is stable, implying that the inverse system of (8.48) is stable. It is also shown in
[69, 107] that, under the assumption of A(0) > 0, the condition that oy < 1 implies
that (w) > 0, -7 < w < 7.

‘We now consider a reduction of a Markov model constructed in Theorem 8.4. We
partition the covariance matrix of the state vector as ¥y = diag(oy, -, 0,.) and
Yo = diag(or41, -+ , 0n). Accordingly, we define

Ao A Are 7 C=[C Cs), C=[C, C (8.68)
Ay Aso

Also, we consider the transfer matrix defined by (7.11)
Z(z) = C(zI — A)7ICT + ;A(O) (8.69)
and its reduced model
Zo(2) = Cy (21, — A1) LCT + ;A(O) (8.70)

The following lemma gives conditions such that the reduced model Z,.(z) becomes
(strictly) positive real.

Lemma 8.6. Suppose that (A, C, C") is minimal and balanced. Then, if Z(z) is
(strictly) positive real, so is Z,.(z). Moreover, if 0,. > 0,41, the reduced model Z,.(z)
is minimal.

Proof. (i) Suppose first that Z(z) is positive real. From (8.55),

3In general, this is not a balanced model.



8.6 Reduced Stochastic Realization 225

Y AXAT (OT — AxCT

M) ==
E=c_czpar A(0) — CxCT

= [ﬂ RIK' 1,J>0 (871

P

By using the partitions in (8.68), M (X)) is expressed as

—A21 E1 AT, — A2 Xa AT, X — As1 Z1AY] — Asa X0 AL, OF — A01 51CT — Asn X507

[21 — A S AT, — Ao 50 AT, A1 51 AT — A3 AL, OT — A1 3107 — A1 5,07 }
Ci — C1 31 AT, — O252ATY, Oy — C151AS, — CoX3AY, A(0) — C1 510 — C2X:C5

Deleting the second block row and column from the above matrix gives

21 — A1121A’1T1 — A1222Ar11‘2 CF — AnZ'lC’lT — A122202T >0 (*)
Cy — C1 51 AT, — C3 55 AL,  A(0) — C1E2,CF — G308 | —
In terms of (A1, C1, C1, A(0)), we define
II—AnI1AY, CF — ApIct
My(II) := [ e S, meRr7

Cy — CLITAT, A(0) — CLIICT

Then, it follows from () that

My(Xy) > {fé};} DH[Al, CF]
Since X5 > 0, we have M, (X;) > 0 with X} > 0.

We show that Ay; is stable. Since (8.71) gives a full rank decomposition of
M(X), we see from Theorem 7.1 that (A, K) is reachable. By replacing B by
KRY? in the proof of Lemma 3.7 (i), it can be shown that A;; is stable. Since,
as shown above, M, (X;) > 0 with Xy > 0, this implies that Z,.(2) is a positive real
matrix; see the comment following (7.26) in Subsection 7.3.1.

(ii) Suppose that Z(z) is strictly positive real. Since (A4, C, C) is minimal, it
follows from Theorem 7.5 (ii), (iii) that ¥~! — X' > 0 and R = A(0) —CXCT > 0.
Since X; is a submatrix of X, we see that Efl — %) >0and A(0) — C; 2,CF > 0.
As already shown in (i), we have M; (X;) > 0, and M, (Z;") > 0 since both ¥ and
X1 satisfy the same ARE. In other words, there exist two positive definite solutions
Efl and X satisfying the LMI and

-2 >0

It therefore follows from Lemma 7.8 that Z,.(z) becomes strictly positive real.
(iii) Suppose that o, > 0,41 holds. Then, it follows from Lemma 3.7 (ii) that
Z,(z) is a minimal realization. O

Thus we have shown that the reduced model Z,.(z) is (strictly) positive real
and minimal, but not balanced. It should be noted that the minimal solution 17, of
My (IT) > 0 satisfies the ARE
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m, = A ILAT, + (CF — Ay 1.l
X (A(0) = G ILCH) (O} = AnILCl)? (8.72)
so that the gain matrix is expressed as
Ky, = (Cf — A ILCTY(A(0) — CLIL.CT) ™ (8.73)
Then the reduced order Markov model of (8.48) is given by
z1(t+1) = Aj121 (t) + K1.€(¢) (8.74a)
y(t) = Craq () + é(t) (8.74b)
where cov{é(t)} = A(0) — C1II.CT, and A;y — K;.C is stable.

Corollary 8.1. The reduced order Markov model of (8.74) is stable, and inversely
stable. O

It should be noted that K7, of (8.73) is different from the gain matrix
Ky = (CF — A1 2,01 — 4155505 ) (A(0) — C1 X, CF — CyX,CF) ™

which is the first block element of K obtained from (8.71). Moreover, the reduced
Markov model with (A4;1, Cy, C;, K1) is not necessarily of minimal phase, since
Ay; — K;Cy may not be stable.

A remaining issue is, therefore, that if there exists a model reduction procedure
that keeps positivity and balancedness simultaneously. The answer to this question
is affirmative. In fact, according to Lemma 3.8, we can define

A, = Ay + App(al — Agy) 1Ay (8.75a)
C, =Cy + Colal — Ayt Ay (8.75b)
C, =Cy + Cylal — AL)71AT, (8.75¢)
A,(0) = A(0) 4 Cy(al — Agyy) L1CF + Co(ad — AL)1CT (8.75d)

where |a| = 1. Then, we have the following lemma.

Lemma 8.7. Suppose that Z(z) = (A, C, C, ) A(0)) is strictly positive real, min-
imal and balanced. If 0, > 0,41 holds, then Z,.(z) = (A,, C,, C., %AT(O)) of
(8.75) is strictly positive real, minimal and balanced.

Proof. See [106, 108]. It should be noted that the expression of A, (0) is different
from that of Lemma 3.8 in order to keep it symmetric. O

So far we have considered the stochastic realization problem under the assump-
tion that an infinite time series data is available. In the next section, we shall derive
algorithms of identifying state space models based on given finite observed data.
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8.7 Stochastic Realization Algorithms

Let a finite collection of data be given by {y(t), t =0, 1, --- , N 4+ 2k — 2}, where
k > 0 and N is sufficiently large. We assume that the given data is a finite sample
from a stationary process. We define the block Toeplitz matrix*

y(k=1) y(k) - y(N+k-2)
o rom [VETDUED N RS
y(0)  y(@) - y(N-1)
and the block Hankel matrix
y(k) yk+1)--- yk+N—-1)
Vi s 1 y(kfl) y(ku)--- y(ka) C REPN

Y2k —1) y(2k) - y(N + 2k —2)

where k > n, and the number of columns of block matrices is V.
Let k be the present time. As before, we write V), = Yg,_; and Yy = Yyor_1,
respectively. The sample covariance matrices of the given data are defined by

1 Yp T 17 _ Epp Epf
N [Yf] ¥y ¥rl= Tpp Ygs

Also, consider the LQ decomposition of the form

[ 21
= 8.76
VN {Yf} {Lm Ly Qg ( )
Then, it follows that
Zp=LaL, Zfs =Ly Ly, + Loy Ly, Zpp = LuLj)

We see that the above sample covariance matrices Xy, Yy, X, are finite dimen-
sional approximations to the infinite matrices H, T, and 7_ of (8.18), (8.19) and
(8.20), respectively.

The following numerical algorithm is based on the theory of balanced stochastic
realization of Theorem 8.4.

Stochastic Balanced Realization — Algorithm A

Step 1: Compute square root matrices L and M of the covariance matrices X'y
and X, such that
Yip=LLY,  %,=MM" (8.77)

“It should be noted that although Yox—1 is a Hankel matrix, YO‘ r—1 1s a Toeplitz matrix.
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Step 2: Compute the SVD of the normalized covariance matrix X'y, such that
L'ey,M T =usvT ~UzvT (8.78)

where ¥ is given by neglecting sufficiently small singular values of X', and hence
the dimension of the state vector is given by n = dim X.

Step 3: Define the extended observability and reachability matrices as
Or = LUSY?, Cp =12y T T (8.79)
Step A4: Compute the estimates of A, C, CT as
A=010,, C=0,1:p,), CT=0C(:1:p) (8.80)

where O, = O (1: (k— 1)p,:) and Oy, = O (p+1: kp,:).
Step AS5: Let A(0) = Xs(1:p,1: p). Then, the Kalman gain is given by

K =(C" - AXCT)(A(0) — cECT)~? (8.81)

Step A6: By the formula in Theorem 8.4, we have an innovation representation
of the form

z(t+1) = Az(t) + Ke(t)
y(t) = Cx(t) + e(t)

where, from (8.53), the covariance matrix of the innovation process is given by R =
A(0) —CXCT.

Remark 8.1. Since Algorithm A is based on the stochastic balanced realization of
Theorem 8.4, we observe that this algorithm is quite different from Algorithm 2 of
Van Overschee and De Moor ( [165], p. 87). In fact, in the latter algorithm, based on
the obtained (4, C, C, A(0)), it is necessary to solve the ARE of (7.84) to derive
the Kalman gain K from (7.85). However, as stated in Chapter 7, there may be a
possibility that the estimate (A, C, C, A(0)) obtained above is not positive real,
and hence the ARE of (7.84) does not have a stabilizing solution. In Algorithm A,
however, we exploit the fact that Y obtained by the CCA is an approximate solution
of the ARE of (8.55), so that we always get an innovation model. O

We present an alternative algorithm that utilizes the estimate of state vector. The
algorithm is the same as Algorithm A until Step 3.

Stochastic Balanced Realization — Algorithm B

Step B4: Compute the estimate of the state vector
Xk — 21/2VTM_1Y/E]|};—1 c RnXN

and define the matrices with N — 1 columns as
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Xpy1 = X4(5,2:N), Xp=Xp(:,1:N—1), Yip=Yip(:,1: N —1)
Step B5: Compute the estimate of (A, C') by applying the least-squares method
] = [e)we ]
N = X —+
[ Y C ¢ Pv
where p, € R™*V=1 and p, € RP*(N=1) are residuals.

Step B6: Compute the sample covariance matrices of residuals

[QS}_ 1

to

STRIT N1 (852

Puby PuPy
PuPry  PuPr

Then, we solve the ARE associated with the Kalman filter [see (5.67)]

P = APAY — (APC" + §)(CPC" + Ry Y(APCT + )T +Q  (8.83)
to get a stabilizing solution P > 0. Thus the Kalman gain is given by
K = (APC" + §)(CPC" + R)™!
Step B7: The identified innovation model is given by
T(t+1) = Az(t) + Ké(t)
y(t) = C(t) +e(t)
where var{é(t)} = CPCT + R.

Remark 8.2. In Algorithm B, the covariance matrix obtained by (8.82) is always
nonnegative definite, so that the stabilizing solution P > 0 of the ARE of (8.83) ex-
ists. Thus we can always derive an approximate balanced innovation model because
cov{Xp} = 2.

In Algorithm 3 of Van Overschee and De Moor ( [165], p. 90), however, one must
solve the Lyapunov equation

D =AY AT+ Q

under the assumption that A obtained in Step BS is stable. By using the solution
X® > 0, the matrices C' and A(0) are then computed by

C=C0x*AT+8T,  A0)=R+CxCT

to getthe data (4, C, C, A(0)). The rest of Algorithm 3 is to solve the ARE of (7.84)
to obtain the Kalman gain as stated in Remark 8.1. It should be noted that Algorithm
3 works under the assumption that the estimated A is stable; otherwise it does not

provide any estimates. Hence, Algorithm B derived here is somewhat different from
Algorithm 3 [165]. O
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8.8 Numerical Results

We show some simulation results using simple models; the first one is a 2nd-order
ARMA model, and the second one a 3rd-order state space model.

Example 8.1. Consider the ARMA model described by
y(t) — 1.5y(t — 1) + 0.7y(t — 2) = e(t) — 0.5e(t — 1) + 0.3e(t — 2)

where e is a zero mean white Gaussian noise with unit variance. We have generated
time series data under zero initial conditions. By using Algorithm A with k¥ = 10,
we have identified innovation models, from which transfer functions are computed.
Table 8.2 shows canonical correlations o;, © = 1, - - - , 6 between the future and past
vs. the number of data NV, where N = oc means that the exact canonical correlations
are computed by using the relation o; = \/ Ai(X X)) derived in Theorem 8.3. We
observe from Table 8.2 that, though the values of the first two canonical correlations
o1 and o2 do not change very much, other canonical correlations o3, o4, --- get
smaller as the number of data IV increases. For smaller N < 1000, we find that o3
and o4 are rather large, so that it is not easy to estimate the order of the ARMA
model. However, as the number of data increases, the difference between o5 and o3
becomes larger, so that we can correctly estimate the order n = 2.

Table 8.2. Canonical correlations between the future and past

N g1 o2 o3 04 g5 O6

500 0.9047 0.4916 0.2328 0.2302 0.1687 0.0865
1000 0.9095 0.5028 0.1685 0.1638 0.1322 0.0776
2000 0.9189 0.5121 0.0997 0.0781 0.0488 0.0415
5000 0.9170 0.5108 0.0760 0.0404 0.0392 0.0311
10000 0.9165 0.5087 0.0468 0.0297 0.0253 0.0224
20000 0.9137 0.5137 0.0342 0.0288 0.0217 0.0129
50000 0.9130 0.5070 0.0142 0.0122 0.0116 0.0064

oo 0.9133 0.5036 0.0000 0.0000 0.0000 0.0000

Now we consider the case where the number of data is fixed as N = 10000. If
we take £ = 80, then the first six canonical correlations are given by

¥ = diag(0.9171, 0.5144, 0.1403, 0.1380, 0.1313, 0.1304)

Compared with ¥ = diag(0.9165, 0.5087, 0.0468, 0.0297, 0.0253, 0.0224) in
Table 8.2 (N = 10000), we see that though the first two canonical correlations o
and o, are not significantly affected, the values of o3, 04, --- are quite changed
by taking a large value of k. This may be caused by the following reason; for a
fixed N, the sample cross-covariance matrix X'y, (or covariance matrices X, and
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Table 8.3. Parameter estimation by Algorithm A

ai as C1 C2

N (=15 (07) (=05) (0.3)

500 —1.3621 0.6147 —0.3842 0.4376
1000 —1.4146 0.6487 —0.4301 0.3795
2000 —1.4723 0.6742 —0.4418 0.3182
5000 —1.5109 0.7077 —0.4791 0.2865
10000 —1.5107 0.7035 —0.4900 0.2899
20000 —1.5152 0.7096 —0.5074 0.2859
50000 —1.4991 0.6989 —0.4940 0.3026

Xpp) computed from (8.76) will loose the block Hankel (Toeplitz) property of true
covariance matrices as the number of block rows k increases.

Table 8.3 displays the estimated parameters of the 2nd-order ARMA model. In
the identification problem of Example 6.7 where both the input and output data are
available, we have obtained very good estimation results based on small number
of data, say, N = 100. However, as we can see from Table 8.3, we need a large
number of data for the identification of time series model where only the output data
is available. This is also true when we use the stochastic realization algorithm given
in Lemma 7.9, because we need accurate covariance data to get good estimates for
Markov models. Although not included here, quite similar results are obtained by
using Algorithm B, which is based on the estimate of state vectors. O

Example 8.2. We show some simulation results for the 3rd-order state space model
used in [165], which is given by

06 0.6 0 0.17
a(t+1)=|—-06 06 0]|at)+ |—015|e(t)
0 004 0.28

y(t) =1[0.78 0.53 1.0]z(t) + e(t)

where e is a Gaussian white noise with mean zero and unit variance. As in Example
8.1, we have used Algorithm A to compute canonical correlations and estimates of
transfer functions, where £ = 10. The simulation results are shown in Tables 8.4
and 8.5. We observe that, except that the estimate of the parameter c; is rather poor,
the simulation results for the 3rd-order system are similar to those of the 2nd-order
system treated in Example 8.1. Also, we see that as the increase of number of data
N, the canonical correlations are getting closer to the true values. O

It should be noted that the above results depend heavily on the simulation con-
ditions, so that they are to be understood as “examples.” Also, there are possibilities
that the stochastic subspace methods developed in the literature may fail; detailed
analyses of stochastic subspace methods are found in [38, 58, 154].
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Table 8.4. Canonical correlations between the future and past

N o1 o2 o3 04 g5 06
2000 0.4042 0.2063 0.1299 0.0873 0.0805 0.0542
5000 0.4038 0.2010 0.0970 0.0739 0.0432 0.0339
10000 0.3899 0.2063 0.1095 0.0483 0.0299 0.0293
20000 0.3801 0.2181 0.1043 0.0340 0.0267 0.0214
50000 0.3840 0.2216 0.1060 0.0139 0.0114 0.0112

oo 0.3820 0.2244 0.1030 0.0000 0.0000 0.0000

Table 8.5. Parameter estimation by Algorithm A

ai a2 as C1 C2 Cc3
N (-1.6) (1.2) (—0.288) (—1.2669) (0.6866) (—0.024)
2000 —1.5809 1.1360 —0.2214 —1.2068 0.5735 0.0748
5000 —1.4937 1.0825 —0.2228 —1.1214  0.5476 0.0461
10000 —1.5641 1.1693 —0.2611 —1.2081 0.6414 0.0190
20000 —-1.6151 1.2161 —0.2901 —1.2812 0.7050 —0.0269
50000 —1.6046 1.2082 —0.2825 —1.2655 0.6890 —0.0120

8.9 Notes and References

This chapter has re-considered the stochastic realization problem based on the
canonical correlation analysis (CCA) due to Akaike [2,3]. Also, we have derived
forward and backward innovation representations of a stationary process, and
discussed a stochastic balanced realization problem, including a model reduction
of stochastic systems.

In Section 8.1 we have reviewed the basic idea of the CCA based on [14, 136].
The stochastic realization problem is restated in Section 8.2. The development
of Section 8.3 is based on the pioneering works of Akaike [2—4]. In Section 8.4,
we have discussed canonical correlations between the future and the past of a
stationary process. We have shown that they are determined by the square roots
of eigenvalues of the product of two state covariance matrices of the forward and
the backward innovation models; see Table 4.1 and [39].

Section 8.5 is devoted to balanced stochastic realizations based on Desai et al.
[42,43], Aoki [15], and Lindquist and Picci [106,107]. By extending the results of
[106, 107], we have also developed stochastic subspace identification algorithms
based on the LQ decomposition in Hilbert space of time series [151, 152], and
stochastic balanced realizations on a finite interval [153, 154].

Section 8.6 has considered reduced stochastic realizations based on [43,106]. An
earlier result on model reduction is due to [50], and a survey on model reduction
is given in [18]. The relation between the CCA and phase matching problems has
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been discueed in [64,77]. Some applications to economic time series analysis are
found in [16].

o In Section 8.7, the stochastic subspace identification algorithms are derived based
on the balanced realization theorem (Theorem 8.4); see also the algorithm in
[112]. Section 8.8 includes some numerical results, showing that a fairly large
number of data is needed to obtain good estimates of time series models. More-
over, Appendix includes a proof of Lemma 8.5.

8.10 Problems

8.1 Show that the result of Lemma 8.1 is compactly written as
LT o Yoz Xy | |L O | I D
0 MY | | Xy Dy | |OM| ~ |DT I
1 D
det [DT 1] S (=) (1= )

8.2 Let Y be a Hilbert space. Let B = span{b} be a subspace of Y. Show that the
orthogonal projection of a € Y onto B is equivalent to finding K such that
|la — Kb||2 is minimized with respect to K, and that the optimal K is given by

and we have

K = BE{ab" }(E{bb"})~!

8.3 Compute the covariance matrices of the output process y for three realizations
given in Theorems 8.4, 8.5 and Lemma 8.5, and show that these are all given by
7.7).

8.4 [43] Suppose that y is scalar in Theorem 8.4, and that canonical correla-

tions {o;, 7 = 1, ---, n} are different. Prove that there exists a matrix S =
diag(+£1, -+, £1) such that

A=S8A"%S, c=CS

8.5 In Subsection 8.5.1, consider the following two factorizations Ty = L; L] =
LoLY and T = My M{" = MyMJ. Then, the SVD of the normalized block
Hankel matrix gives

H=LUSVI M = LU, 2V," M)

Suppose that the canonical correlations {o;, 4 =1, n} are different. Let
the two realizations of y be given by (4;, C;, C;, K;, R;), j = 1, 2. Show
that there exists a matrix S = diag(+£1, --- , 1) such that

A2 = SAlS, 02 = 015, 02 = 015, Ky = SK, Ry = Ry
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8.11 Appendix: Proof of Lemma 8.5
1° From (8.59a), the covariance matrix of x; is given by

TAL 1=0,1, -

8.84
(AT)ilE: l= _17 _27 o ( )

E{ay(t + D2 (1)} = {
Define w*(t) := z*(t + 1) — Az*(t). Note that z,(t — 1) € E{Y7 | Y} c Y and
zy(t) € BE{Y 1 | Y51} CYiy C Y. Then, since z*(t) = 1oy (t — 1), we get
w*(t) = Xy (t) — A o (t - 1) € Y
and hence forl = 0,1, - -,
wi(t+1) =S oy (t+1) - A T (t+1-1) €Y, C Y (8.85)
Also, from (8.84),
B{w*(t+ 1) (=" ()"}
=E{z*(t+1+1)(z*t)'} — AB{z*(t + 1) (z*(t))*}
= X Byt + Daf (t - 1)}2 !
— AT Bt + 11— Daf (- 1)}2 !
=y iyAtiyt _Ay-iy Aty =, 1=0,1,---
Since z*(t) = Y71z (t — 1), it follows that
B{w*(t+ )zl (t—1)} =0, 1=0,1,---

implying that w*(t + 1) L span{z;(t — 1)} = E{Y; | Y }. This together with
(8.85) show that w* (¢t + 1) L Y, . Hence, the following relation holds.

wt+0) La* @), yt—1), 1=0,1, - (8.86)

2° Define e*(t) := y(t) — Cx*(t). Since z* () = X 1oy (t — 1) € Y, we have
e*(t) € Y. Also, from (8.59),

E{y(t)(z*(t))"} = B{[Cx(t) + en(t))y (t — 1)} T
=CFE{zy(t)zf (t = 1)} X'+ E{es(t)zf (t — 1)} 21
=CYAY™ + E{es(t)[zf () A +ef () K]} X1
=CYAS ™ + E{ey(t)ef () }K X!
=CTAY '+ (C-CXAY t=Cx!
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Hence, we have
B{e*(t)(z* ()"} = E{y()(«* ()"} — CE{z* (t)(z* (1)) " }
=C0cx'-Ccx'=0

This implies that e*(t) L z*(¢). Thus, for any ¢, we have e*(t) L E{Y; | Y;} and
e*(t) € Y;'. Hence, similarly to the proof in 1°, we get

et+1) LY, = €e@t+l)LY;, 1=0,1,---

By definition, e*(t+1) € Y/, C Y/ . it follows that e* (t+1) L z*(t), 1 =10, 1, ---.
Thus, summarizing above, the following relation holds.

e*(t+1) Lz*(#), yt—1), l=0,1,--- (8.87)
3° It follows from (8.86) and (8.87) thatforh =1, 2, - - -,

E{w*(t+ h)(w ()"} = B{w* (t + )z <t+1> A (0]} = 0
E{w"(t + h)(e*(6) "} = B{w* (t + Hy(t) - Ca* (1]} = 0
E{e"(t+ h)(e (1)} = B{e* (t + W)y(t) - Ca* (1]} = 0
E{e"(t + h)(w"(£)"} = E{e"(t + W)[e*(t + 1) — A" (0]} = 0

This implies that the joint process (w*(t), e*(¢)) is white noise.
Now we compute the covariance matrices of w*(t) and e*(t). We see that the
covariance matrix of w*(¢) is given by

Q" = E{w*(t)(w* ()"}
= B{[z*(t + 1) — Az*()][z* (t + 1) — Az*(¢)]T}
=Xt -Axyiat
Noting that z*(¢t) L e*(t), we have

= E{w"(t)(e"(¥)) "} = E{[ “(t+1) — Az ()](e* ()T}

= B{z*(t+ 1)[y(t) - Cz* (1)]"}

= S B {ay(1)[Cap(t) + es(t) — CX tay (¢ — 1)]}

= S B{ay(t)z; (1)}CT — X7 E{ap(t)ay (t - 1)}27ICT

=x1x0t -y iyAyict =0t - Axio?

)t
(t

Also, the covariance matrix of e*(t) is given by

= E{e*(t)(e" (1)} = B{ly(t) — Cz* ()][y(t) — Ca*()]"}
=A0)-cx~'c”
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It therefore follows that

[(5‘2} f;;] -

4° Finally, by using the ARE of (8.62), i.e.,

Yl _Ay-1AT (OT _Ax-1C07

(CT — AX-1CT)T A(0) — CZ-1CT (8.85)

Y =ATYA+ (CT - ATECT)(A(0) —CcEC)TH(CT - ATZCT)T  (8.89)
we can derive, as shown below, the ARE of (8.65):
P = AN AT 4 (CT — AXTICT(A(0) — cx~ieT)
x (C—Ccx A" (8.90)

This equation implies that the block matrix of (8.88) is degenerate, so that there exists
a linear relation between w*(t) and e*(¢). Hence, we have

w(t) = E{w™(t) | e*(1)}
= Blw*(t)(e" (1)) T }(E{e"(t)(e* (1) T e (t)
= S*(R*) te*(t) = K*e*(t)
This completes a proof of Lemma 7.5.

Derivation of Equation (8.90) As shown in Section 5.8 (see Problem 5.7), the
ARE of (8.89) is expressed as

Y=F'SF + F'2CY(A(0) - CXCT)'CXF +CT A1 (0)C
where F' := A — CT A=1(0)C. Using the matrix inversion lemma of (5.10) yields
Y -C"A N 0)C = F'[2 + XCT(A(0) - CECY)TIC X F
=F' [z ' -CTA Y (0)C] 'F (8.91)

Again, using the matrix inversion lemma, the inverse of the left-hand side of (8.91)
becomes

(¥ -CcTA7Y0)0] = 7 4 ZleT (A0) —cx~ic)~tex!

Suppose that F' is invertible. Then, by computing the inverse of the right-hand side
of (8.91), and rearranging the terms,

Y l=Fy'FY y Py 1CY(A(0) - Cc2 ety eyt FT + CT AT (0)C

This is equivalent to (8.90). O
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Subspace Identification (1) — ORT

This chapter deals with the stochastic realization problem for a stationary stochastic
process with exogenous inputs. As preliminaries, we review projections in a Hilbert
space, and explain the feedback-free conditions and the PE condition to be satisfied
by input signals. The output process is then decomposed into the deterministic and
stochastic components; the former is obtained by the orthogonal projection of the
output process onto the Hilbert space spanned by the exogenous inputs, while the
latter is obtained by the complementary projection. By a geometric procedure, we
develop a minimal state space model of the output process with a very natural block
structure, in which the plant and the noise model are independently parametrized.
Subspace algorithms are then derived based on this convenient model structure.
Some numerical results are included to show the applicability of the present algo-
rithm.

9.1 Projections

We briefly review projections in a Hilbert space and present some related facts that
will be used in the following. Let z € R™ be a random vector. Let the second-order
moment of z be defined by

B{llal*} = 3 Ba)

where E{-} denotes the mathematical expectation. Let a set of random vectors with
finite second-order moments be defined by

H= E{a: ‘ E{|z|*} < oo}
Then the mean-square norm of = € H is given by ||z||sc = /E{||z]/2}. It is well

known that H is a linear space, and by completing the linear space with this norm,
we have a Hilbert space generated by random vectors with finite second moments.
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Let a, b be elements of J, and let A, B be subspaces of H. If E{ab™} = 0, we
say that a and b are orthogonal. Also, if E{ab™} = 0 holds for alla € A and b € B,
then we say that A and B are orthogonal, and we write A L B. Moreover, A V B
denotes the vector sum such that {a + b | a € A, b € B}, A + B denotes the direct
sum (AN B = {0}), and A @& B the orthogonal sum (A L B). The symbol A+
denotes the orthogonal complement of the subspace A in H, and span{a, b} denotes
the Hilbert space generated by all the linear combinations of random vectors a and
b. If infinite random vectors are involved, we write span{ay, as, - - }.

Let A and B be subspaces of H. Then, the orthogonal projection of a € A onto
B is denoted by E{a | B}. If B = span{b}, the orthogonal projection is written as

E{a| B} = E{ab" }E{b0b"}'b

where (-)T denotes the pseudo-inverse. The orthogonal projection onto the orthogo-
nal complement B is denoted by E{a | B*} = a— E{a | B}. Also, the orthogonal
projection of the space A onto B is denoted by E{A | B}.

Lemma 9.1. Let B, € C K, and suppose that a € BV C and BN C = {0} hold.
Then, we have the decomposition formula

E{a| BV e} =Eje{a| B} + Ejs{a|C} (9.1)

where E”@{a | B} is the oblique projection of a onto B along C, and Eug{a | ¢}
the oblique projection of a onto C along B as in Figure 9.1. O

Figure 9.1. Oblique projections

We write the oblique projection of A onto B along € as EA'H@{A | B}.IfB L€,
then the oblique projection reduces to the orthogonal projection onto B.

Definition 9.1. Suppose that a € A and b € B satisfy the orthogonality condition
E{(a—Efa| )0 - E{p|C})T}=0, €CH 9.2)

Then, we say that a and b are conditionally orthogonal with respect to C. If (9.2)
holds for all a € A and b € B, then we say that A and B are conditionally orthogo-
nal with respect to C. This is simply denoted by A L B | C. O
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Figure 9.2. Conditional orthogonality (a € ZV €, b € X V C)

In Figure 9.2, let the orthogonal projections of @ and b onto Y = C be denoted by
c1 and ¢y, respectively. Then, the condition (9.2) implies that a — ¢; and b — c» are
orthogonal.

Lemma 9.2. The conditional orthogonality A L B | € is equivalent to the following

condition . .
E{B|AvVC}=E{B|C} (9.3)

Proof. The conditional orthogonality implies that (9.2) holds forall a € A, b € B.
Since (b — E{b| €}) L Cand E{a | C} € C, it follows from (9.2) that

E{a(b—E{0| €})"} = E{(a+c)(b— E{b|€})"} =0 (9.4)

holds foralla € A,b € Bandc € €. Since AVE={a+c|a€A,ceC}, we
see from (9.4) that B — E{B | €} L AV C. Hence,

E{B|AVC}=E{E{B|C}|AVC} (9.5)

However, since € C AV C, the right—hangl side equals E {B | €}. Conversely, if (9.3)
holds, then we have (9.5), so that B — E{B | €} L A V C. This implies that (9.4)
holds for all a, b, ¢, and hence (9.2) holds. O

9.2 Stochastic Realization with Exogenous Inputs
Consider a discrete-time stochastic system shown in Figure 9.3, where u € R™ is

the input vector, y € RP the output vector, £ € R? the noise vector. We assume that
u and y are second-order stationary random processes with mean zero and that they

Figure 9.3. Stochastic system with exogenous input



242 9 Subspace Identification (1) — ORT

are available for identification. The output y is also excited by the external noise &,
which is not directly accessible. We need the following assumption, whose meaning
is explained in the next section.

Assumption 9.1. There is no feedback from the output y to the input u. This is called
a feedback-free condition. O

The stochastic realization problem with exogenous inputs is stated as follows.

Stochastic Realization Problem

Suppose that infinite data {u(t), y(¢), t = 0, £1, - - - } are given. The problem is to
define a suitable state vector z with minimal dimension and to derive a state space
model with the input vector u and the output vector y of the form

x(t+ 1) = Az(t) + Bu(t) + Ke(t) (9.6a)
y(t) = Cx(t) + Du(t) + e(t) (9.6b)

where e is the innovation process defined below (see Lemma 9.6). It should be noted
that the stochastic realization problems considered in Chapters 7 and 8 are realiza-
tions of stationary processes without exogenous inputs.

Consider the joint input-output process w = [ﬂ € R?, where d := p + m.

Since we are given infinite input-output data, the exact covariance matrices of w are
given by

Np(l) = E{w(t + D™ (8)} = sz(? ﬁzzgm 1=, 41,

and the spectral density matrix is

(oo}

_ b,,(2) P u(z)]
Ppw(2) = Awwlzl:[yy Y
€)= 2 A= 570 o)
We consider the prediction problem of w(t + k), k = 1, 2, --- based on the
present and past observations w(t), w(t — 1), - - - such that

XL = mlI}l cov {w(t +k)— f:fiw(t - Z)}

* i=0

where f; € R¥*? are coefficients. In general, for the minimum prediction error
covariance matrices, we have 0 < Y; < Xy < --- If Xy > 0, then the process
w is regular. If det Xy = 0, w is called singular [138]; see also Section 4.5. If the
spectral density matrix $,,,,(z) has full rank, we simply say that w has full rank. The
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regularity and full rank conditions imply that the joint process w does not degenerate.

Let the Hilbert space generated by w be defined by
W = span{w(r) | T =0,%1,---}

This space contains all linear combinations of the history of the process w. Also, we
define Hilbert subspaces generated by u and y as

U = span{u(r) | 7=0,£1,---}
Y =span{y(r) [ 7 =0,+1,---}

Let ¢ be the present time, and define subspaces generated by the past and future of u
and y as

U, =spanfu(r) | T <t}, Y =span{y(r) | r <t}
Uf = spanfu(r) |72 ¢}, Y = span{y(r) | 7 > 1)

It may be noted that the present time ¢ is included in the future and not in the past by
convention.

9.3 Feedback-Free Processes

There exists a quite long history of studies on the feedback between two observed
processes [24-26,53,63]. In this section, we provide the definition of feedback-free
and consider some equivalent conditions for it.

Suppose that the joint process is regular and of full rank. It therefore follows from
the Wold decomposition theorem (Theorem 4.3) that the joint process w is expressed
as a moving average representation

v -2 (& By o

i=0

where A; € RP*P, B; € RP*™, (C; € R™*P, D, € R™*™ are constant matrices,
and v € RP and n € R™ are zero mean white noise vectors with covariance matrices

e[V e = e, @0

} ,4=0, 1, --- and the d x d transfer matrix
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Theorems 4.3 and 4.4 assert that {I;,i = 0,1,---} are square summable and
I'~Y(z) is analytic in |z| > 1. In the following, we further assume that both I'(z)
and I'"!(z) are stable, i.e. I'(z) is of minimal phase. Also, we assume that I'(z)
is a rational matrix [24,25], so that we consider only a class of finitely generated
stationary processes, which is a subclass of regular full rank stationary processes.
The condition of rationality of I'(z) is, however, relaxed in [26].

Now we provide the definition that there is no feedback from the output y to
the input u, and introduce some equivalent feedback-free conditions. The following
definition is called the strong feedback-free property [26]; however for simplicity,
we call it the feedback-free property.

Definition 9.2. There is no feedback from y to u for the joint process of (9.7), if the
following conditions are satisfied.

(i) The covariance matrix Q is block diagonal with
Q = Ql 9 , Ql c Rpxl” Q2 c Rmxm
0 Q2

(ii) The moving average representation (9.7) is expressed as
y)] _~=[A: B:i] [v(t—1i)
[u(t)} =2 { 0 Di| |n(t—1) ©3)

A(z) B(z)

0 D(z)} is block upper triangular. U

so that the transfer matrix I'(z) = {

Theorem 9.1. Suppose that the joint process w is regular and of full rank. Then, the
following conditions (i) ~ (v) are equivalent.

(i) There is no feedback from the output vector y to the input vector u.
(ii) The smoothed estimate of y(t) based on the whole input data is causal, i.e.

E{y(t) | U} = E{y(t) | Ug,},  t=0,%1, - (9.9)

(iii) In terms of the input u, the output process y is expressed as

y(t) = Ku(t—i)+ Y Liv(t —i) (9.10)
1=0 1=0

where

K(z)= i Kz ¢, L(z) = i Lzt
1=0 1=0

are rational matrices such that L(z) has full rank, and K (z), L(z) L=1(z) are
stable, and the processes u and v are uncorrelated, where v € RP is a zero mean
white noise vector.
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(iv) Given the past of u, the future of u is uncorrelated with the past of y, so that the
conditional orthogonality condition

ur Ly, |u;, t=0,%£1,--- 9.11)
holds. This condition is equivalent to
BQU | Y7 VU = B{US W), ¢ =0,£1,- 9.12)

which implies that the past of y is irrelevant for the prediction of the future of u
given the past of u. This condition is due to Granger [63].

Proof. A proof is deferred in Appendix of Subsection 9.10.1. O

9.4 Orthogonal Decomposition of Output Process

9.4.1 Orthogonal Decomposition

Suppose that Assumption 9.1 holds. Putting A = U/, ,, B = Y, and € = U, 4,
we get A V € = U. It then follows from Lemma 9.2 and (9.11) that

E{Yo, |U =E{Y, [ Ug,},  t=0, %1, (9.13)
Since y(t) € Y, ,, we have
E{y(t) | U} = E{y(t) | Uy},  t=0,=£1, - (9.14)

This is the same as the condition (ii) of Theorem 9.1.
We now define the orthogonal decomposition of the output process y.

Definition 9.3. Consider the orthogonal projection of y(t) onto U such that
ya(t) = E{y(t) | U} = B{y(t) | Uy, )} 9.15)

Then, yq is called the deterministic component of y. Also, the complementary pro-
Jection

ys (1) = y(t) — B{y(t) | Uy}
= y(t) — E{y(t) | U} = E{y(t) | U} (9.16)
is called the stochastic component of y. O

The deterministic component y is the orthogonal projection of the output y onto
the Hilbert space U spanned by the input process u, so that yg4 is the part of y that is
linearly related to the input process u. On the other hand, the stochastic component
Y5 1s the part of y that is orthogonal to the data space U; see Figure 9.4. Thus, though
s 1s causal, it is orthogonal to the whole input space.
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Ys

0 > u
Yd

Figure 9.4. Orthogonal decomposition

Lemma 9.3. Under Assumption 9.1, the output process y is decomposed into the
deterministic component yq4 and the stochastic component y,. In fact,

y(t) = yalt) + ys (1), t=0,£1,-- 9.17)

where ys(t) L ya(7) holds forall t, T = 0, £1,---.
Proof. Immediate from (9.15) and (9.16). O

From this lemma, we see that if there is no feedback from the output to the input,
a state space model for y is expressed as the orthogonal sum of state space models
for the deterministic component y, and the stochastic component y,. It follows from
Theorem 9.1 (iii) that y4 and y, correspond to the first- and the second-term of the
right-hand side of (9.10), respectively.

9.4.2 PE Condition

In this subsection, we consider the PE condition to be satisfied by the input process,
which is one of the important conditions in system identification [109, 145]; see also
Appendix B.

Assumption 9.2. For each t, the input space U has the direct sum decomposition
U=Uu + U (9.18)
where U, N U = {0}. O

The condition U;” N U;" = {0} is equivalent to the fact that the spectral density
function of w is positive definite on the unit circle [106], i.e.,

Guu(w) > clp, Je>0 (9.19)

In this case, the input » has PE condition with order infinity.

The condition (9.19) is equivalent to the fact that all the canonical angles between
the past and future spaces of the input are positive. It also follows from [64, 69] that
a necessary and sufficient condition that the canonical angles between U;" and U; is
zero is that $,,,(z) has some zeros on the unit circle.
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Remark 9.1. The above assumption is too restrictive for many practical cases, and
we could instead assume the PE condition of sufficiently high order and the finite
dimensionality of the underlying “true” system. The reason for choosing the above
condition is that it allows very simple proofs in the mathematical statements below,
and it does not require the finite dimensionality assumption on the “true” systems. [

Lemma 9.4. Under Assumptions 9.1 and 9.2, the deterministic component yq of
(9.15) is expressed as

Giu(t —1) Gi_iu(i (9.20)
Z Z

i—=—00

where G; € RP*™ are constant matrices with G(z) = Yo~ G,;z~" stable.

Proof. This fact is essentially shown in the proof of Theorem 9.1 (iii). From (9.15),
we have y4(t) € U, ;, so that it is expressed as a linear combination of the present
and past inputs as in (9.20).

The stability of G(z) can also be proved as follows. The optimality condition for
{G;,i=0,1, ---}1is given by

=Y Guu(t—i) Lu(t—j), j=0,1,--

=0
Thus it follows that
Ayu(G) =D Gidyu(G—1i),  §j=0,1,--
=0

Since the above equation is a discrete-time Wiener-Hopf equation, we can solve it by
using the spectral factorization technique. Suppose that the spectral density matrix
@, (2) is factored as

Duu(2) =0(2)01 (271

where ©(z) is of minimal phase. It then follows from [11] that the optimal transfer
matrix G(z) is given by

G(2) = [P4u(2)07 T (z71)]4 07 (2) (9.21)

where [ - | denotes the operation that extracts the causal part of the transfer matrices.
Thus the stability of G(z) follows from the definition of (9.21). O

Lemma 9.5. The deterministic component yq and the stochastic component ys of
(9.15) and (9.16) are mutually uncorrelated second-order stationary processes, and
are regular and of full rank.

Proof. Lemma 9.3 shows that two components are uncorrelated. We see from (9.20)
that y; = G(z)u. However, since u is second-order stationary and since G(z) is
stable, y4 is a second-order stationary process. Thus ys := y — yq4 is also second-
order stationary. Moreover it may be noted that y and u are regular and of full rank,
so are y4 and ys,. O
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Remark 9.2. A finite sum approximation of y, of (9.20) is given by

k—1
ya(t) =) Gult — i)
1=0

for a sufficiently large k£ > 0. It can be shown that this is easily computed by means
of LQ decomposition (see Section A.2). O

9.5 State Space Realizations

In order to obtain a realization of the stochastic component y,, we can employ the
results of Chapter 8. For the deterministic component y4, however, the mathematical
development of a state space realization is slightly involved, since we must employ
oblique projections due to the existence of the exogenous input w.

We begin with a realization of the stochastic component.

9.5.1 Realization of Stochastic Component
Let the Hilbert space generated by y be defined by
Y =span{y.(r) | 7 = 0,£1,---} c Ut
and let Hilbert subspaces generated by the past and future of y, be defined by
Y7 =span{y,(r) [T <t}, U =span{ys(r) |7 > 1}

It follows from the stochastic realization results in Chapter 8 that a necessary and
sufficient condition that the stochastic component has a finite dimensional realization
is that the predictor space

X = B{Y 190} 9.22)
is finite dimensional.

Theorem 9.2. Define dim (X, / ") = 7. Then, the minimal dimension of realization
is n. In terms of a basis vector x5 of the predictor space, a state space realization of
the stochastic component y is given by

Ts(t+1) = Asas(t) + Kqeq(t) (9.23a)
ys(t) = Csas(t) + es(t) (9.23b)

where e is the innovation process for ys, or the one-step prediction error defined by

es(t) = ys(t) — BE{ys(t) | 97}

Proof. Immediate from Theorem 8.4 in Subsection 8.5.2. O
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The innovation representation of (9.23) is called the stochastic subsystem. The
following lemma shows that the innovation process e, is the same as the conditional
innovation process e of y.

Lemma 9.6. The innovation process e is expressed as
ex(t) = e(t) = y(t) = B{y(t) | Uy, VY, } (9.24)
Proof. By using the property of orthogonal projection, we can show that
e(t) = y(t) — E{y(t) | Uiy VYT } = y(8) — E{y(t) | Uy, @97
= (y(t) — E{y(®) | U7, }) — E{y(t) | 97}
= ya(t) = E{ya(t) + 9a() | 9, }
= () — E{y,(8) | 97} = es(D)

where we used the fact that y4(¢) L Y. O

9.5.2 Realization of Deterministic Component

A state space realization of the deterministic component should be a state space
model with the input process u and the output process yq4. In the following, we use
the idea of N4SID described in Section 6.6 to construct a state space realization for
the deterministic component of the output process.

As usual, let the Hilbert space generated by y, be defined by

~

Y =span{yq(r) | 7=0,£1,---} CU

and let Hilbert spaces spanned by the future and past of the deterministic component
yq be defined by

Yt = span{ya(r) | 7 > t}, Y7 = span{ya(r) | T < t}

Definition 9.4. For any ¢, if a subspace 8; (C U, ) satisfies the relation
B {07 1 U7} = B {97 | 80} 9.25)
then §; is called an oblique splitting subspace for the pair (9?‘, u;). O

The space S, satisfying (9.25) carries the information contained in U; that is
needed to predict the future outputs y4(t +1),1 = 0, 1, - - -, so that it is a candidate
of the state space. Also, the oblique predictor space for the deterministic component

X = B {0 100} (9.26)

is obviously contained in U; and is oblique splitting. This can be proved similarly

to the proof of Lemma 8.4. In fact, since xj/ ~ C U, it follows from the property
of projection that
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El\ut+ Oy =x" = Euut+ o 1ty
= By { B {0 U0} 12577}
= Euujr {9: | x:_/_}

This shows that DC;F/ " is an oblique splitting from (9.25). Thus all the information in

ﬂ; that is related to the future is contained in the predictor space T)Cj /=
We further define the extended space by

Y =9 v/ (9.27)
Then, we have the following basic result.

Lemma 9.7. The predictor space C)C?_/ " defined by (9.26) is an oblique splitting
subspace for (Y, U;), and
X T =9n Uy (9.28)
holds. Moreover, under Assumption 9.2, we have the following direct sum decompo-
sition _ ~ _
=@ 0w+ G 0w (9.29)
Proof. A proof is deferred to Appendix of Subsection 9.10.2. O

Now we assume that dim(x;r/ 7 ) = n holds. Let the subspace generated by ()
be defined by
U, = spanfu(t)} C U

It follows from Assumption 9.2 that U, , = U; + U (U7 N U = {0}). Hence,
we have a direct sum decomposition

xt++/1_ =Y N Ui =G n W)+ (U5 N W) (9.30)
where Y7, C Y/ holds, so that
(T 0 U € (3 nwy) =%/
Since (9;’;1 N U;) C Uy holds, we see from (9.30) that
XX+ 9.31)

It should be noted here that the right-hand side of the above equation is a direct sum,
since T)Cj/f N U; = {0} holds from xj/* cu .

Letz4(t) € R" be abasis vector for DC;F/ ~,and z4(t+1) be the shifted version of
it. We see from (9.28) that z:4(¢ + 1) is a basis for the space T)Cttr/f =Y 0 U,
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Bau(t) -4 v za(t + 1)

Aqzy (t)

Figure 9.5. Direct sum decomposition of z4(t + 1)

As in Figure 9.5, the projection of z4(t + 1) € C)C:;/f onto the subspaces in the

right-hand side of (9.31) gives the state space equation
$d(t + ].) = Ad.ill'd(t) + Bdu(t) 9.32)

where A; € R**™ and By € R"*™. Note that, since the right-hand side of (9.31) is
a direct sum, (9.32) is a unique direct sum decomposition.
Since yq(t) € Y NU; ., it follows from (9.27) that

ya(t) € Y7 0 Uy = (U 0 W) + (B 0 W) o + W

Hence, the projection of y,(t) onto the two subspaces in the right-hand side of the
above equation yields a unique output equation'

ya(t) = Cqza(t) + Dau(t) (9.33)

where Cy € RP*™ and Dy € RP*™ are constant matrices.
Since the predictor space C)C:_/ " isincluded in U, we see that 24(t) € U; . As
in Lemma 9.4, it follows that z4(%) is expressed as

za(t) = Z Fu(t—i) = z4=F(2)u
i=1
where F'(z) is stable and F; € R™™ ™. Since u is regular and stationary, so is z4.
Thus it follows from (9.32) that
= (2l —Ag)'Bau=F(z)u = F(2)= (21— A4) " 'Bqg

Since F'(z) is stable, if (A4, By) is reachable, all the eigenvalues of A; must be
inside the unit disk, so that 4, is stable.
Summarizing above results, we have the following theorem.

Theorem 9.3. Suppose that the joint process w has a rational spectral density matrix
and that the input process u satisfies Assumptions 9.1 and 9.2. Then, the predictor

'The decomposition of y4(t) is obtained by replacing xq(t + 1) — ya(t), Aaza(t) —
Cdxd(t), Bd.rd(t) — Ddu(t) in Figure 9.5.
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space DC: '™ has dimension n, and a state space model with the state vector x4(t) €
DC:F is given by
xq(t +1) = Agzq(t) + Bau(t) (9.34a)
ya(t) = Caza(t) + Dau(t) (9.34b)

where Ay is stable. This is called the deterministic subsys{em. Moreover, let X; be
the state space of another realization of y4, and let dim(X;) = n. Then we have
n > n.
Proof. The first half of the theorem is obvious from above. We shall prove the
result for the dimension of the state spaces. Let T € R™ be a state vector, and let a
realization for y4 be given by

z(t + 1) = Az(t) + Bu(t)

ya(t) = Cz(t) + Du(t)

The impulse response matrices of the system are defined by
D, t=0
Wt = _ _
CA" !B, t=1,2,---

The following proof is related to that of the second half of Lemma 9.7; see Sub-
section 9.10.2. In terms of impulse responses, we have

t+k
t+k Z Wt+k Zu ZWt+k ZU

where y; (t + k) € U; and y (t + k) € U . Since U; N U = {0}, we see that
y;, (t + k) is the oblique projection of y4(t + k) onto U, along U;", so that

yg (t+k) = B {yalt + k) | Uy} (9.36)

and hence {y; (t + k) | k = 0,1, ---} generates xj/* [see (9.26)]. Similarly,
Y (t + k) is the oblique projection of y4(t + k) onto U, along U;, and also by
definition, {y} (t + k) | k =0, 1, - - - } generates Y7+ It therefore follows that

yi(t+k) € (95 0 USH) (@ nu)
By combining this with (9.36), we get
va(t+k) =yg (t+k) +yf(t+k) € (0 U)+ @ N W)=Y

This implies that the two terms in the right-hand side of (9.35) are respectively the
oblique projections of y4(t + k) onto the two subspaces of (9.29). Moreover, from
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(9.35), we can write y; (t+k) = CA*Z(t), k=0, 1, - -+, so that the space T)Cj_/f is
generated by {C A*Z(t) | k = 0, 1, - -+ }. However, the latter is contained in X; :=
span{Z(t)}. Thus it follows that T)Cj/_ C X, implying that dim(z,4) < dim(z). O

This theorem shows that the state space X, of a realization of y4 includes the
state space C)C?_/ ~, so that X" /~ is a state space with minimal dimension.

9.5.3 The Joint Model

As mentioned above, to obtain a state space realization for y, it suffices to combine
the two realizations for the deterministic and stochastic components. From Theorems
9.2 and 9.3, we have the basic result of this chapter.

Theorem 9.4. A state space realization of y is given by

=[] ] [ [R] e oam
y(t) = [Cq Ci] [idém + Dau(t) + e(?) (9.37b)

Proof. A proof is immediate from Theorems 9.2 and 9.3 by using the fact that
es = e (Lemma 9.6). O

We see from (9.37) that the state-space model for the output process y has a very
natural block structure. The realization (9.37) is a particular form of the state space
model of (9.6) in that A- and B-matrix have block structure, so that the state vector
x4 of the deterministic subsystem is not reachable from the innovation process e,
while the state vector x4 of the stochastic subsystem is not reachable from the input
vector u. Also, if the deterministic and stochastic subsystems have some common
dynamics, i.e., if Ay and As; have some common eigenvalues, then the system of
(9.37) is not observable, so that it is not minimal.

¢ . HGE ”
+
u . P(z) yj_’é y>

Figure 9.6. Multivariable transfer function model

Thus, as shown in Figure 9.6, the output y is described by

y=P()u+ H(z)e (9.38)
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where P(z) and H (z) are respectively defined by
P(Z) =Dy + Cd(ZIn - Ad)ile

and
H(z) = I, + Cs(2Iz — Ay) 1K

It should be noted that by the orthogonal decomposition method, we have a multivari-
able input-output model where the plant transfer matrix P(z) and the noise transfer
matrix H (z) have independent parametrizations.

Up to now, we have considered the ideal case where an infinite input-output data
is available. In the following sections, we derive subspace identification methods by
adapting the present realization results to given finite input-output data.

9.6 Realization Based on Finite Data

In practice, we observe a finite collection of input-output data. In this section, we
consider the realization based on finite data. Suppose that we have a finite input-

output data {u(t), y(t), t =0, 1, --- , T'}. Let the linear spaces generated by u and
y be denoted by

Upo,7) = span{u(t) |t =0,1,---, T}

Yjo,7) = spanf{y(t) [t =0,1,---, T}

Also define the orthogonal complement of Ujo 77 on the joint space Ujo, 77 V Yjo, 77
which is denoted by Z[O,T}- Therefore, we have

Ujo, 1) & Zjo,11 = Ujo, 11 V Jjo,17
Lemma 9.8. For the deterministic subsystem of (9.34), we define
Ja(t) == E{ya(t) | o} = E{y(t) | Uo7y}

Then the projected output §4(t) is described by the state space model

fﬁd(t + 1) = Adifid(t) + Bdu(t) (939&)
Ya(t) = Caza(t) + Dau(t) (9.39b)
£4(0) = E{z4(0) | Ujo,71} (9.39)

where #4(t) == E{xq(t) | Upo,77}. It should be noted that the above equation is the
same as (9.34), but the initial condition &4(0) is different from x4(0) as shown in
(9.39¢).

Proof. Since U D Ujo, 77, we have (9.39) by projecting (9.34) onto Ujg 7. O



9.6 Realization Based on Finite Data 255

Lemma 9.8 shows that we can identify the system matrices (A4, Ba, Ca, Dqa)
based on the data {u(t), 94(¢),t = 0,1, ---, T} by using the subspace method
described in the next section. Moreover, from the identified matrices and (9.39), we
have

t—1
Ga(t) = CaAlza(0) + > CaAl "' Bu(i) + Daul(t) (9.40)

i=0
fort = 0,1, ---, T. Since the estimates of (A4, By, C4, D4) are given, we can

obtain the estimate of the initial state vector Z4(0) of (9.39¢) by applying the least-
squares method to (9.40).

We turn our attention to realization of the stochastic subsystem. In this case, we
need to compute the orthogonal projection of the output data onto the orthogonal
complement Z[O,T} , which is written as

gs(t) = y(t) — B{y(®) | Yo}, t=0,1,---,T (9.41)

The next lemma clarifies the relation between the stochastic components ys and ¢
defined above.

Lemma 9.9. Define the estimation error
gd(t) :yd(t) _gd(t)v tZO, 17 R T

Then we have

Proof. We first note that

y(t) = ys(t) + yd(t)v ys(t) LU

Since U D Ujp, 77, it follows from (9.41) that

3s(t) = ys(t) + ya(t) — E{ys(t) + ya(t) | U1}

= a(t) + (valt) = E{ya(t) | Upp.11}) = 9o (8) + Fult)

as was to be proved, where we used the fact that E{y,(t) | Upo,77} = 0. O

Lemma 9.9 means that for a finite data case, the output §4(¢) projected onto
the complement 2o 1) is different from the true stochastic component defined by
ys(t) = E{y(t) | UL}, because the former is perturbed by the smoothed error §q(t)
of the deterministic component.

Define the vector Z4(t) := x4(t) — Z4(t). It then follows from (9.34) and (9.39)
that

i’d(t + ].) = Adif?d(t), ﬂd(t) == Cdi'd(t)

so that the term acting on the stochastic component y, () is expressed as
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Ga(t) = CaALE4(0), t=0,1,---,T (9.43)

Thus the estimation error Z4(0) does influence on the stochastic component as well
as the deterministic component. If we ignore the additive term §4(t) in (9.42), there
are possibilities that we may identify stochastic subsystems with higher dimensions
than the true order . Hence it is desirable to filtering out this additive terms by some
means. For more detail, see [30, 131].

9.7 Subspace Identification Method — ORT Method

In this section, we develop subspace methods for identifying state space models
based on finite input-output data. In the sequel, the subspace method is called the
ORT method, since the identification methods developed in this section are based on
the orthogonal decomposition technique introduced in Section 9.4.

Suppose that the input-output data {u(t), y(¢), t =0, 1, --- , N + 2k — 2} are
given with N sufficiently large and £ > n. Based on the input-output data, we define
as usual block Hankel matrices as

w(0)  u(l)--- uw(N-1)
SR B C R TC O R
(k= 1) u(k) - (N + k —2)
and
u(k) w(k+1)--- uw(k+N-1)
uk+1) wk+2) - ulk+N)
Ukjak—1 = : ) . : € RF™N
W@k —1) u(2k) - u(N+2%—2)
Similarly, we define Yo x_1, Yrj2k—1 € RF?>*N and also
Uojzk—1 = [513:1;11] ; Yojok—1 = {Yyki:k_lj

9.7.1 Subspace Identification of Deterministic Subsystem

Consider the subspace identification of the deterministic subsystem of (9.39). We
define the extended observability matrix as

Cq
CyAq4

Ok — eRkan’ k>n

CdAsil
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and the block lower triangular Toeplitz matrix as

Dq4
CqBy Dy
Wk(Ddde) = CdAdBd CdBd Dd c ]Rkpka
C4A 2By -+ --- C4By Dy

By iteratively using (9.39a) and (9.39b), we obtain a matrix input-output equation of
the form [see (6.23)] . .
ka\zk—1 = Ok X} + VU1 (9.44)

where f’k‘b x_1 18 the block Hankel matrix generated by 4 and X & is defined by

X =[ga(k) Za(k+1) -+ Za(k+ N —1)]

We need the following assumption for applying the subspace method to the sys-
tem of (9.44); see Section 6.3.

Assumption 9.3. A/) rank(X{) = n.

A2) rank(Upjap—1) = 2km.

A3) span(f(,f) N span(Ug|2x—1) = {0}. O

As mentioned in Section 6.3, Assumption Al) implies that the state vectors
Zaq(k),Zq(k + 1), --- are sufficiently excited. The condition A2) implies that the
input process u has the PE condition of order 2k, and A3) is guaranteed by the
feedback-free condition.

First we present a method of computing the deterministic component of the out-

put process. According to the idea of the MOESP method of Section 6.5, we consider
the LQ decomposition:

Uojor—1 | _ [ B O Qi (9.45)
Yoj2k—1 Ry1 Raa | | Q5
where Ry, € R¥*m*2km R, € R2kPX2kP are block lower triangular matrices, and

Q € RV*2km 0, € RNV*2*P are orthogonal matrices. It follows from A2) of
Assumption 9.3 that Ry is nonsingular, so that we have

Yojok—1 = Ry1Q + RQ3 = R21Rf11U0|2k—1 + RyQ3

We see that 51 Q7 belongs to the row space of Up|aj._1, and R;»Q3 is orthogonal
to it since QT Q> = 0. Hence, R2; Q7 is the orthogonal projection of Yo|21—1 onto
the rowspace Up|ax—1- Thus, the deterministic component is given by

f/0721971 = R1Q] = Ry Ryy' Upjai—1 (9.46)

and hence the stochastic component is
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Yos|2k71 = Y0|2k—1 - Yoﬁzkfl = R22Q_;F 9.47)

Bearing the above facts in mind, we consider a related LQ decomposition

Ukj2k—1 Ly, 0 0 0 Qi
Uojk—1 Lsy Lyy 0 0 Q,

= 9.48
Yopuor | = | Lo Lo Ly 0 | | QF (9.45)
Yijok—1 Lay Las Lz Las | | QF

where Lq1, Loy € RE™*km oo L,, € RFPXEP are block lower triangular matrices,
and Q1, Q2 € RV*F™ 3, Q4 € ]RNX’”’A are orthogonal matrices. In view of (9.46)
and (9.48), the deterministic component Y,jz k_1 18 given by
Vi 1 = LaQT + L@y
On the other hand, from (9.44) and (9.48), we have
L1 QF + Ok Xf = L QT + L2 Q3 (9.49)

Post-multiplying (9.49) by Qs yields O, X Q2 = Las. Since X{Q5 has full row
rank from A1) of Assumption 9.3, we have

Similarly, pre-multiplying (9.49) by a matrix (O;-)7 satisfying (O3 )70 = 0, and
post-multiplying by (), yield

(O Ly = (OF) W (Bg, Dg) L1, (9.51)

Making use of (9.50) and (9.51), we can derive a subspace method of identifying
the deterministic subsystem. In the following, we assume that LQ decomposition of
(9.48) is given.

Subspace Identification of Deterministic Subsystem — ORT Method
Step 1: Compute the SVD of Lys:

A G 7T A A
Lir = [0 U] {g g] [“;T} ~ USTT 9.52)

where S is obtained by neglecting smaller singular values, so the dimension of the

A~

state vector equals dim(S). Thus, the decomposition
50T = (0572) (3/27T)
gives the extended observability matrix Oy, = US1/2.

Step 2: Compute the estimates of A, and Cy by

Ag =01 04, Ca=0r(1:p,:) (9.53)
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where O denotes the matrix obtained by deleting the first p rows from Oy.

Step 3: Given the estimates of A4 and Cj, the Toeplitz matrix ¥, becomes linear
with respect to By and D4. By using U™ of (9.52) for (O;-)*, it follows from (9.51)
that

UYLy L = UMWy (Bg, Da) (9.54)

Then we can obtain the least-squares estimates of By and D4 by rewriting the above
equation as (6.44) in the MOESP algorithm.

Remark 9.3. In [171] (Theorems 2 and 4), the LQ decomposition of (9.48) is used
to develop the PO-MOESP algorithm. More precisely, the following relations

Im(Ok) =Im [L42 L43]

and
UY[Ls1 Lzs Li]) = U4 (Ba, Dg)[Loy Lo Lyi]

are employed. We see that these relations are different from (9.50) and (9.51); this is
a point where the ORT method is different from the PO-MOESP method. O

9.7.2 Subspace Identification of Stochastic Subsystem

We derive a subspace identification algorithm for the stochastic subsystem. For data
matrices, we use the same notation as in Subsection 9.7.1. As shown in (9.47), the
stochastic component is given by

s _ C-d
Yo|2k—1 = Y0\2k—1 - Yo|2k—1

It follows from (9.48) that

s _|Lss O Q3
0|2k—1 — [L43 L44:| |:Q} (955)
so that we define
Yoir1 = L33Q3, Vijor1 = LasQ3 + LaaQF
The sample covariance matrices of stochastic components are then given by
Lop Xpf 1 f/O\Icfl [ ¥ T (v T:|
= ~ Yoiu— Yion—
|:Efp Eff N Yk|2k71 ( 0|k 1) ( k|2k 1)

Thus we have

1
LiLy; +Luly,), X L33 L3,

1 T 1
LyzLsy, Xyp= pp — N

The following algorithms are based on the stochastic subspace identification al-
gorithms derived in Section 8.7.
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Subspace Identification of Stochastic Subsystem — ORT Method
Algorithm A

Step 1: Compute square roots of covariance matrices X and X, satisfying
Yy p=LLY, X, =MM"
Step 2: Compute the SVD of the normalized covariance matrix
LY, M T=UxvT ~0ZVT

where X' is obtained by deleting sufficiently small singular values of X, so that the
dimension of the state vector becomes n = dim Y.

Step 3: Compute the extended observability and reachability matrices by
Or = LUSY/?, Cp =12V T M7
Step A4: Compute the estimates of A,, C, and C; by
A, =0l 0k, Co=0i(1:p:), O =C(,1:p)
where O, = Ok (p+1: kp,:).

Step A5: The covariance matrix of y, is given by A,(0) := Y¢s(1:p,1: p). By

using (As, Cs, Cs, A5(0)), the Kalman gain is given by
K, = (07 = A 20 (A(0) - C.2C0)
so that the innovation model becomes
zo(t+ 1) = Agw,(t) + Ke(t)
ys(t) = Coay(t) + e(t)
where var{e(t)} = A,(0) — C, XCT.

Now we present an algorithm that gives a state space model satisfying the posi-
tivity condition, where Steps 1-3 are the same as those of Algorithm A.

Algorithm B
Step B4: Compute the estimates of state vectors by

X, = Z~'1/2‘7TM_11~/(]|k_1 c RN
and define matrices with NV — 1 columns

Xipr = Xp(5,2:N), Xp=Xp(5,1:N=1), V3, =V, 1:N=1)

Step B5: Compute the estimates of matrices A; and C, applying the least-
squares method to the overdetermined equations
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As % Pw
- [e] ]

Step B6: Compute the covariance matrices of residuals

[Q S 1 [pwp?v pw/ﬁ]

Xkt

s
Yk\k

where p,, and p, are residuals.

ST fi’l TN =1 pupl pupt
and solve the ARE [see (5.67)]
P =A,PAT — (4,PCT + $)(C,PCT + R)""(A,PCT + 8T +Q
In terms of the stabilizing solution P > 0, we have the Kalman gain
K, = (A,PCY + 8)(C,PCY + R)!
Step B7: The innovation model is then given by

B(t+1) = Aa(t) + K,é(t)
y(t) = Cui(t) + é(t)

where var{é(t)} = C,PCT + R.

261

The above algorithm is basically the same as Algorithm B of stochastic balanced
realization developed in Section 8.7. We see that since the covariance matrices of
residuals obtained in Step B6 is always nonnegative definite and since (Cy, A,) is
observable, the ARE has a unique stabilizing solution, from which we can compute
the Kalman gain. Thus the present algorithm ensures the positivity condition of the

stochastic subsystem; see also Remark 8.2.

9.8 Numerical Example

Some numerical results obtained by using the ORT and PO-MOESP methods are
presented. A simulation model used is depicted in Figure 9.7, where the plant is a

Sth-order model [175]

» H(z)

+
[ yd>é y»

- C(:) ’

» P(z)

Figure 9.7. Simulation model
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0.02752=* + 0.05512 "

P =
(2) 1—2.34432=1 4 3.081272 — 2.5274273 + 1.24152—* — 0.36862 5

and where the input signal generation model C(z) and the noise model H(z) are
respectively given by

B V1 — a2

1—az"V’

1-0221-04827

Cl) H(z) ="y | 0ot 4 0422

The noises e and e, are mutually uncorrelated white noises with N(0,0?) and
N(0, 1), respectively. Thus the spectral density functions of u and v are given by

Pu(w) =[C()P,  @u(w) = o®|H ()

so that their powers are proportional to the gain plots of C(z) witha = 0.9 and H (z)
shown in Figure 9.8, respectively.

SN H ()

Gain [dB]

| o)
P(e)]

0.5 3

1 15 2
Frequency [rad/sec]

Figure 9.8. The Bode gain plots of P(z), C(z) and H(z)

In the present simulations, we consider the four cases according as « and/or v
are white noises or colored noises, where the variance o2 of noise e is adjusted so
that the variance of v becomes approximately o2 = 0.01. Also, the variance of the
output y4 = P(2)u changes according to the spectrum of u, so that the S/N ratio in
the output becomes as

v

2 /52 10.73 white noise (a = 0)
o —
¢ 51.43 colored noise (a = 0.9)

In each simulation, we take the number of data points N = 1000 and the number
of block rows k = 15. We generated 30 data sets by using pseudo-random num-
bers. In order to compare simulation results, we have used the same pseudo-random
numbers in each case.

Case 1: We show the simulation results for the case where the input signal u is a
white noise. Figure 9.9 displays the Bode gain plots of the plant obtained by applying
the ORT method, where v is a white noise in Figure 9.9(a), but is a colored noise in
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Gain [dB]
Gain [dB]

0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2
Frequency [rad/sec] Frequency [rad/sec]

(a) (u = white, v = white) (b) (u = white, v = colored)

25 3

Figure 9.9. Identification results by ORT method
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(a) (u = white, v = white) (b) (u = white, v = colored)

25 3

Figure 9.10. Identification results by PO-MOESP method

Figure 9.9(b), and where the real line denotes the Bode gain of the true plant. Also,
Figure 9.10 displays the corresponding results by the PO-MOESP method. We see
that there is no clear difference in the results of Figures 9.9(a) and 9.10(a). But, there
are some differences in the results of Figures 9.9(b) and 9.10(b), in that the ORT
method gives a slightly better result in the high frequency range and we observe a
small bias in the low frequency range between 0.5 to 1 (rad) in the estimates by the
PO-MOESP method.

Case 2: We consider the case where u is a colored noise. Figure 9.11 displays
the results obtained by applying the ORT, and Figure 9.12 those obtained by using
the PO-MOESP. Since the power of the input u decreases in the high frequency range
as shown in Figure 9.8, the accuracy of the estimate degrades in the high frequency
range.

Though the output S/N ratio for colored noise input is higher than for white noise
input, the accuracy of identification is inferior to the white noise case. There are no
clear difference in Figure 9.11(a) and 9.12(a) for white observation noise, but if v is
a colored noise, there exist some appreciable differences in the results of the ORT
and PO-MOESP methods in the low frequency range as well as in high frequency
range as shown in Figures 9.11(b) and 9.12(b).
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Gain [dB]
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Figure 9.11. Identification results by ORT method
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Figure 9.12. Identification results by PO-MOESP method

A reason why there is a considerable difference in the results of the ORT and
PO-MOESP in the case of colored observation noise is that the noise v has a large
power in the frequency range greater than 1.5 (rad) where the input u has a low
power. In fact, the peak of the gain characteristic shown in Figure 9.12(b) is located
around 1.8 (rad), which is the same as the peak of noise spectrum of Figure 9.8. In
the PO-MOESP method, the frequency components beyond 1.5 (rad) are erroneously
identified as those due to the input signal u rather than the noise v. On the other hand,
in the ORT method, the data is first decomposed into the deterministic and stochastic
components based on the preliminary orthogonal decomposition, and it seems that
this decomposition is performed very well even if the noise is colored as long as the
exogenous input satisfies a PE condition with sufficiently high order. For differences
between the two algorithms; see Remark 9.3 and programs listed in Tables D.5 and
D.7.

Further simulation studies showing a superiority of the ORT method based on the
preliminary orthogonal decomposition are provided in Section 10.7, in which results
of three subspace identification methods will be compared.
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9.9 Notes and References

e Based on Picci and Katayama [130, 131], we have presented realization results
for the stochastic system with exogenous inputs under the assumption that there
is no feedback from the output to the input and the input satisfies a sufficiently
high PE condition. The main idea is to decompose the output process into the
deterministic and stochastic components, from which we have derived a state
space model with a natural block structure.

e In Section 9.1, projections in a Hilbert space are reviewed and the property of
conditional orthogonality is introduced. Then Section 9.2 has formulated the
stochastic realization problem in the presence of exogenous inputs, and Section
9.3 discussed the feedback-free conditions in detail based on [24, 25, 53].

o In Section 9.4, we have considered the PE condition of the exogenous inputs,
and developed a method of decomposing the output process into the determin-
istic component and the stochastic component. In Section 9.5, we have shown
that a desired state space model can be obtained by combining realizations for
the deterministic and stochastic components, resulting in a state space model
with a block structure in which the plant and the noise model have independent
parametrizations.

e In Section 9.6, a theoretical analysis of deterministic and stochastic realiza-
tion methods based on finite input-output data is made, and in Section 9.7, the
ORT method of identifying the deterministic and stochastic subsystems are de-
veloped by using the LQ decomposition and the SVD. Since the present algo-
rithms are derived from the basic stochastic realization methods in the pres-
ence of exogenous inputs, they are different from those of MOESP [171-173]
and N4SID [164, 165]. Some numerical results are included in Section 9.8; for
further simulation studies, see [29,30], [93], and for theoretical analyses of ill-
conditioning of subspace estimates, see [31,32].

e In Section 9.10, proofs of Theorem 9.1 and Lemma 9.7 are included.

9.10 Appendix: Proofs of Theorem and Lemma

9.10.1 Proof of Theorem 9.1

1° Proof of (i) — (ii). Rewriting (9.8), we have

y| _ [A(z) B(2) | v
ul | 0 D()||n
where v and 7) are zero mean white noise vectors with covariance matrices Q; and

()2, respectively. By assumption, I'(z) is stable, so are A(z), B(z) and D(z). Also,
we have
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Also, I'"1(z) is stable, so are A7!(z) and D~1(2). Thus, in particular, D(z) is of
minimal phase. Hence, we see that u = D(z)n is the innovation representation for

u, and 7 is the innovation process for u.
Define

H=span{n(r) |7 =0,%1,---},  H; =span{n(r) | 7 <t}

Since D(z) is of minimal phase, we have U = H and U; = H, . Moreover, we get
E {Z Bin(t — i) ﬂf} = Bin(t —i)
i=0 i=0
=F {Z Bﬂ] t+1}

Noting that v 1L I, we have

Efy®)|W=E {Z v(t—1i +ZBmt—z) ﬂ-(}

t—z

o
= {2 vt —i +ZBm

t) [ Upr }

t+1}

as was to be proved.
2° Proof of (ii) — (iii). From (ii), it follows that

ya(t) == E{y(t) | Uy, } = ZBm(t —i) = ya=B(2)n

so that from u = D(z)n, we have
ya = B(z)D *(2)u =: K(2)u

Also, from the stability of B(z) and the minimal phase property of D(z), we see that
K (z) is stable.
We define ¢(t) := y(t) — E{y(t) | U;, 1} Then,

ZKlut—z )+ ((t)

i=0

We show that ((t) is orthogonal to U. Since E{y(t) | Uy} = E{y(t) | U} and
Uy CUL, CU, h=1,2, -, we get
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E{y(t) [Ugn}=E{y@®) U},  h=1,2.-
It therefore follows that

B {Z Kou(t = i) + (1) \ utﬂ}

i=0
= E{y( ) | ut+1}
= E{y(t) | Uy, .}

=F {Z Kiu(t — i) + ¢(t) ‘ u;h} (9.56)

where h = 1, 2, - - -. Note that

M} ZKut—z
{ZKU

t+h}
Thus it follows from (9.56) that
E{C(t) | Uy} = B{COH) [ Uiy 3 =0, h=1,2,--

where ((¢) L U, is used. However, since U; , , C U}, h =0, —1, ---, we have
¢(t) LU p, h =0, =1, ---. Thus it follows that

B{¢(t) | Uy, ) =0, h=0,+1,---

This implies that  is orthogonal to U.
Recall that ( := y — y4 is defined by the difference of two regular full rank
stationary processes, so is (. Let the innovation representation of ¢ be

() = i Liv(t—i), Lo=1I,
i=0

where v € RP is a zero mean white noise vector with covariance matrix Ql, and
where L(z) := Y o, Liz~" has full rank and minimal phase. Hence, y can be ex-
pressed as (9.10), where v is uncorrelated with u due to the fact that { L w. Since
K (z) is stable, and since L(z) is of minimal phase, and L(z) has full rank, the proof
of (iii) is completed.

3° Proof of (iii) — (iv). Let the Hilbert space generated by the past of { be given
by Z; =span{((r) | 7 < t}. Since v L u,

U, vy, =U; ®2;
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From (iii), it follows that u(t + h) L Z,, h =0, 1, - - -, so that
E{u(t+h) | U VY, } = E{ut+h) | U ©2;}
=EB{ut+h)|U}, h=01,-
This implies that (9.12) holds.

4° Proof of (iv) — (i). We define (t) = y(t) — E{y(t) | Uz, }. From (iv), we
have

E{u(t+h) | U } = E{u(t+h) | U VY, }
=E{u(t+h) | U ®2;},  h=01,-
Thus it follows that E{u(t+h) | 27} =0, h =0, 1, - - -. By the definition of {(t),

E{u(t+h) |27} =0, h=—1, =2, --- holds, implying that u is orthogonal to .
Let the innovation representation of ¢ be given by

o0

) =Y Aw(t—i), Ao=1I,

i=0

where v is a zero mean white noise vector with covariance matrix (1. Hence we
have

y(t) = C(t) + E{y(t) | U, }

= Z Aiv(t —i) + ZKiu(t — )

Let the innovation representation of the stationary process u be given by
u(t)=> Dm(t—i), t=0,%1, - (9.57)
i=0

where 7 € R™ is a zero mean white noise vector with covariance matrix ()5, where
D(z) = Y.;2¢ D;z~" is of minimal phase. It follows from (9.57) that u = D(z),
so that

y(t) = Aiw(t—i)+ Y Bin(t—1i) (9.58)
i=0 i=0

where B(z) = K(z)D(z).From (9.57) and (9.58), I'(z) has a block upper triangular
structure, implying that there is no feedback from y to w.

9.10.2 Proof of Lemma 9.7

First we show that C)C;_/ ~ is an oblique splitting subspace for (Y, U; ). Clearly,
from (9.27), any § € Y is expressed as
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_ A~ A " +/—
g=g+¢ gedt,  cex)

Since C)C?_/ "~ is an oblique splitting subspace for (9?, U; ), and since £ € X, /= is

included in U, , we have
B {7 1 U7} = B {0 1 W) + B €1 U7}
- EHUf {91 xtﬂ_} + E”uj £ DC;H_}
= Euuj{ﬂ | x:/f}
Hence
B {05 1) = Span(EHw {71U;} ‘ je 9;*)
= span (B, (7| 7} |5 € 97)
= B {97 156773

This proves the first statement.
_ From (9.26) and (9.27), we have DC?_/_ CU; and T)Cj/_ C Y/, so that T)Cj/_ C
(Y, N U;) holds. Conversely, suppose that € Y;” N U;” holds. Then, we have

ey =9rvaT, peuy;

Letn = n; + 12 where n; € 9? and 7o € DC?_/_ C U; . Since n € U, , we have
m =n—mn2 € U, . However, since 11 € H;’r, it also follows from (9.26) that

m= EA”uj’ {m U}t e x:/7

Thus, we have p =11 + 12 € DC;F/ . This completes the proof of (9.28).
We now prove (9.29). The following inclusion relation clearly holds:

Yo @ nu) + (Y n uh) (9.59)
because the two sets in the right-hand side of the above equation are included in the
set in the left-hand side. We show the converse. Since Y; = Y v DC;F/ ~, it suffices
to show that

UF @ N U + (Y5 N wh (9.60)
X @ U + 30U 9.61)

It follows from Lemma 9.4 that

t+h
at+h) = > Grnu(i) =y, (t+h)+y](t+h)

i=—o00
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where
y, (t+h) = Z Giypn_iu(i) € U, (9.62a)
t+h
T(t+h) = ZGt+h au(i) € UfF (9.62b)

and where U;" N'U; = {0}. Thus y;; (¢ + h) is the oblique projection of y4( + h)
onto the past U; along the future U;", so that it belongs to C)C:_/ ~. Thus we get
y, (t+h) € C)C?_/_ =Y NU; . Also, we have

ys(t+h)=yat+h)—y (t+h) €Y

Thus, from (9.62), the relation y} (t + k) C Y N U holds. Therefore, it follows
that
yat+h) =y;t+h)+y (t+h) € NU)+ Y NnU)
Since span{yq(t + h) | h =0, 1, ---} = Y, we have (9.60). Also, it follows that
(9.61) trivially holds, since T)C:F =Y nU; from (9.28).
This complete the proof of Lemma 9.7.
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Subspace Identification (2) - CCA

In this chapter, we consider the stochastic realization problem in the presence of
exogenous inputs by extending the CCA-based approach. The oblique projection
of the future outputs on the space of the past observations along the space of the
future inputs is factorized as a product of the extended observability matrix and the
state vector. In terms of the state vector and the future inputs, we then derive an
optimal predictor of the future outputs, which leads to a forward innovation model
for the output process in the presence of exogenous inputs. The basic step of the
realization procedure is a factorization of the conditional covariance matrix of the
future outputs and the past input-output given future inputs; this factorization can
easily be adapted to finite input-output data by using the LQ decomposition. We
derive two stochastic subspace identification algorithms, of which relation to the
N4SID method is explained. Some comparative simulation results with the ORT and
PO-MOESP methods are also included.

10.1 Stochastic Realization with Exogenous Inputs

Consider a stochastic system shown in Figure 10.1, where u € R™ is the exogenous
input, y € R? the output vector, and ¢ the stochastic disturbance, which is not ob-
servable. We assume that {u(t), y(t), t = 0, £1, - - - } are zero mean second-order
stationary stochastic processes, and that the joint input-output process (u, y) is of
full rank and regular.

Figure 10.1. Stochastic system with exogenous input
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The stochastic realization problem considered in this chapter is the same as the
one studied in Chapter 9, which is restated below.

Stochastic Realization Problem

Under the assumption that the infinite data {u(t), y(t), t = 0, £1, - - - } are given,
we define a suitable state vector z with minimal dimension and derive a state space
model with the input vector u and the output vector y of the form

z(t+ 1) = Az(t) + Bu(t) + Ke(t) (10.1a)
y(t) = Cz(t) + Du(t) + e(t) (10.1b)
where e is an innovation process. O

In this chapter, we shall present a stochastic realization method in the presence
of an exogenous input by means of the CCA-based approach. We extend the CCA
method developed in Chapter 8 to the present case. Under the absence of feedback
from y to u, we derive a predictor space for the output process y, leading to a minimal
causal stationary realization of the process y with the exogenous process u as an
input. A basic idea is to derive a multi-stage Wiener predictor of the future output in
terms of the past input-output and the future inputs, where an important point is to
define an appropriate causal state vector.

Let ¢ be the present time, and k a positive integer. Then, we define the future

vectors
0 u(t)
so=| TV | Y
Yt +k—1) w(t +k— 1)
and the past vectors
y(t—1) u(t=1)
e t=2)) ) u(t —2)
We further define
w(t—1)
=" e - [u9)

where w € R?, d := p + m is the joint input-output process. It should be noted that
the future vectors f(t) € R*? and u,(t) € RF™ are finite dimensional, but the past
input-output vector p(t) is infinite-dimensional.
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The notation in this chapter is the same as that of Chapter 9. The linear spaces
generated by the past of w, y and the future of u are respectively denoted by
P, =span{w(r) |7 <t}

)T <t}
)

|7 >1}

Y; = span{y(r

U = span{u(r

Also, we assume that these spaces are complete with respect to the mean-square

norm ||z||g¢ = /E{||z||2}, so that P;, Y; and U} are thought of as subspaces of

an ambient Hilbert space H = U V Y that includes all linear functionals of the joint
input-output process (u, y).

Let B be a subspace of the Hilbert space 3. Then the orthogonal projection of a

vector a € H onto B is denoted by E{a | B}. If B is generated by a vector b, then
the orthogonal projection is expressed as

E{a| B} = E{ab"}E{bb"}1b
= Y Xhb=: E(a|b)

where X := E{ab'} is the covariance matrix of two random vectors a and b, and
()1 is the pseudo-inverse. Let B+ be the orthogonal complement of B C H. Then,
the orthogonal projection of a onto B~ is given by

E{a| B} :=a—-FE{a| B}

If B is generated by a random vector b, then we write E{a | BL} = E(a | b*). For
the oblique projection; see also Section 9.1.
We begin with a simple result on the conditional covariance matrices.

Lemma 10.1. For three random vectors y, a, b € I, we define the conditional
covariance matrix . .
Zyalp == E{E(y | b")E(a | b")T} (10.2)

Then, it follows that
Zyalp = Zya = Zyp(Zss) "' Dia (10.3)

where Xy is assumed to be nonsingular.

Proof. By definition,
B(y | b)) =y = Zy(Zw)~'b, Bla|b") =a— Zap(Zu)"b
Substituting these relations into (10.2) yields
Zyaps = E{ly — Zyp(Zp) 7' b][a — Lap(Zes) 10"}

Rearranging the terms, we get (10.3) [see also Lemma 5.1]. O
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Lemma 10.2. Consider three random vectors y, a, b € H and two subspaces A :=
span{a} and B := span{b} with AN B = {0}. Then, we have

E{y|AVB} =Eis{y | A} + Eja{y | B}
=:1I(y)a+P(y)b (10.4)

Also, define the conditional covariance matrices by

Saalp = B{E(a | b")E(a | bH)"}
Syapp = E{E(y | b")E(a | 41)"}
Sypla = E{E(y | a")E(b | a™)"}
Zipja = B{E® | a")E® | a*)"}

Then, I1(y) and ¥ (y) satisfy the discrete Wiener-Hopf equations
H(y)zaalb = Zya|ba q/(y)zbb\a = Eyb|a (10.5)

where we note that if Yoo and Ly, are positive definite, so are X, and Xy,

Proof. We see that the orthogonal projection of (10.4) is given by

E{y| Av B} = E{yla" le}E{ [b] o le}l M

Thus it follows that

—1
- Eaa Eab a
Bly1av =15 Sl |57 3| 6]

Daa zabr [0]

1 Zve T [Eba 2bp b

(10.6)

We show that the first term in the right-hand side of the above equation is the oblique
projection of y onto A along B. Recall the inversion formula for a block matrix:

2 5] -

Putting A = ¥,,, B=CT = X, and D = X}, we have A := A — BD7'C =
X aalp- Thus, from (10.4) and (10.6),

At —~A-'BD™!
-D7'cA™* D'+ D'CcA'BD!

Eaa Eab:| -
Xba Xbp
—1
aalb

— o T X!

aalb

(y) = [Sye ) [

= [Eya Eyb]

= (S~ T 5 Ta) 57

aa|b

ya\bE

aalb
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This proves the first relation in (10.5). Similarly, we can show the second relation
holds.
Now letv = Va for V € R**"= . Note thatv € A = span{a}. Then, we have

H(w)a= L2, a=VEZupX a=Va=v

aal aal

Hence, II(-) is idempotent on A. Also, putting z = Zb for Z € R**™ and noting
that Y45 = 0, we get

II(2)a = zza‘bz(;;‘ba = ZEba‘bE;al‘ba =0

so that 1 (-) annihilates any elementin B = span{b}. It therefore follows that I7 (y)a
is an oblique projection of y onto A along B. In the same way, we can show that
¥ (y)b is an oblique projection of y onto B along A.

Suppose that X, , and X, are positive definite. Then, the positivity of the condi-
tional covariance matrices X4 and Xy, is derived from A NB = {0}. In fact, if
N Xaaip = 0,1 # 0 holds, then

0=n"oappn = 0" E{fa — E{a | b}][a— E{a | b}]"}n
= E{[n" (a - E{a | b})*}
This implies n%a = nYE{a | b} = n' X X5, € B, a contradiction. This proves
the positivity of X, 5. Similarly, we can prove the positivity of Xpp)q- O

10.2 Optimal Predictor

In this section, we shall consider the prediction problem of the future f(¢) by means
of the past input-output p(t) and the future input u, (¢). In the following, we need
two assumptions introduced in Chapter 9.

Assumption 10.1. There is no feedback from the output y to the input u. O
Assumption 10.2. For each t, the input space U has the direct sum decomposition
U=U + U (U nu ={o} (10.7)

This is equivalent to the fact that the spectral density of the input u is positive definite
on the unit circle, i.e.,

Dy (W) > clpm, Fe¢>0 (10.8)
holds. This is also equivalent to the fact that the canonical angles of the past and
future are positive. O

As mentioned in Chapter 9, the condition of Assumption 10.2 may be too strong
to be satisfied in practice; but it suffices to assume that the input has a PE condition
of sufficiently high order and that the real system is finite dimensional.

The following theorem gives a solution to a multi-stage Wiener problem for pre-
dicting the future outputs based on the joint past input-output and the future inputs.
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IIp(t)
Figure 10.2. Oblique projection

Theorem 10.1. Suppose that Assumptions 10.1 and 10.2 are satisfied. Then, the
optimal predictor of the future f(t) based on the past p(t) and future u.(t) is given
by

(10 = BLF@) | P VUFY = Ip(t) + Pus (1) (109)

where IIp(t) denotes the oblique projection of f(t) onto P, along WS, and Wu (t)
is the oblique projection of f(t) onto U along Py as shown in Figure 10.2. More-
over, Il and W respectively satisfy the discrete Wiener-Hopf equations

OXppw = Zippus YZuulp = Zfulp (10.10)

Proof. If we can prove that P, NU;” = {0}, then we see from Lemma 10.1 that the
orthogonal projection E{f(t) | P; V U] } is given by the direct sum of two oblique
projections. Thus it suffices to show that U;” N P; = {0}.

Let ¢ € U} N P; . Then, we have ¢ € U} and ¢ € Py = Y; V U; . From the
latter condition, there exist ) € Y, and v € U, such that { = 5 + v. Since there is
no feedback from y to u, it follows from (9.13) that

B{Yy Uy =E{Yy (U7}, t=0,%1, -

Hence, the orthogonal decomposition of € Y, into the sum of deterministic and
stochastic components gives = 14 + 7)s, Where

na=E{n|UW}=E{n U}, n.=E{n|lu}

Thus, it follows that ( = (v + 1a) + s, ¥ + 14 € U, , ms L U. Since ¢ € U, we
get E”u:r{(j | U, } = 0, implying that

By {(v +ma) + s [ U7} =0
However, since v + 14 € U, , and since ns L U, ,
E||ut+{(’/+77d) +ns | U } = E||ut+{1/ +04| U =v+n,=0

Thus, ¢ € u;r satisfies ( = s, L U, so that { = 0, as was to be proved. O
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For convenience, we put an index k to denote that the matrices II € RkpXo© and
¥ € RkPxkm have k block rows, so that we write them I and Wy, respectively.
Thus, the terms in the right-hand side of (10.9) are expressed as

p(t) = B {F () | 7} (10.11)

and .
Puy (t) = By {f(t) | U} (10.12)

Next we show that by using the oblique projections of (10.11) and (10.12), we can
construct a minimal dimensional state space model for the output y which is causal
with respect to the input u. By causal here we mean that the oblique projection of
(10.12) is causal, so that the operator ¥}, has a block lower triangular form.

The following lemma will give a representation of the orthogonal projection in
Theorem 10.1.

Lemma 10.3. Suppose that Assumption 10.1 is satisfied. Then, from Theorem 10.1,

we have
Efy(t+h) | P, VU = E{y(t+ D) | Py V U, 14n)} (10.13)
where h =0, 1, - - -, and where Uy 1y = span{u(t), --- , u(t + h)}. Also, Wy is
given by
Go
Gi Gy O
v, =| G2 G1 Go € Rhpxkm (10.14)
Gr 1 Gro -+ - Go
where (Go, G1, - -+ ) are impulse response matrices. Hence, Uy, becomes causal.

Proof. First, we show the following relation for the conditional orthogonality:
ALB|C = ALB|(AVE), AsCA (10.15)

Ipdeed, since Ag CAA, we have .AAJ_ BlC = A 1 B | C. Thus two relations
E{B|AVC}=E{B|Cland E{B | AoV €} = E{B | €} hold from Lemma
9.2. This implies that

E{B|AVC}=E{B|C}=E{B|AVeE€}

However, since the left-hand side can be written as E{B| AV (A V )}, it follows
that E{B | AV (Ao V €C)} = E{B | Ao V C}, as was to be proved.
Since there is no feedback from y to u, we see from Theorem 9.1 (iv) that

Yonm LW [ Wy, =01, (10.16)

Putting Ag = Y, . A =Y, 411> B = u;hﬂ and C = U
(10.15) that

1 ny1» it follows from
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Yoo L W (Y VUL L) (10.17)

Also, putting B =Y, , .. A = U, 0. € =Y VUL, in(10.17), it follows
from Lemma 9.2 that

E{y;+h+1 | Y, v U} = E{g;+h+1 | Y u;+h+1}

Moreover, noting that y(t + h) € y;+h+1’ we have

E{y(t +h) Y, VU} = E{y(t—f— h) |4, Vv u;+h+1}
= E{y(t+n) | P, VU em}

This proves (10.13).
We show that ¥y, is a causal operator. In fact, from (10.13),

E||3>t— {y@) | U, 4}

By {y(t+1) | U
Upuy(t) = 1P {u( )| Upe, e41) 3

EIITPZ {yt+k—=1) | Uy, 40-1)}
Since Uy, ¢4.1) = span {u(t), -+, u(t + h)}, we have
Ejp—{y(t + 1) | U, 14} = Gru(t) + Groyu(t +1) + -+ + Gou(t + h)

so that ¥, becomes a block Toeplitz matrix. The stationarity of ¥y follows from the
stationarity of the joint process (u, y). O

In the next section, we shall define the state vector of the system with exogenous
inputs in terms of the conditional CCA technique, where the conditional canonical
correlations are defined as the canonical correlations between the future and the past
after deleting the effects of future inputs from them.

10.3 Conditional Canonical Correlation Analysis

As shown in Chapters 7 and 8, the stochastic system without exogenous inputs is
finite dimensional if and only if the covariance matrix of a block Hankel type has
finite rank. It may, however, be noted that X', is not a block Hankel matrix as
shown in (10.18) below.

We introduce the conditional CCA in order to factorize the conditional covari-
ance matrix Xy, of the future and past given the future inputs. By stationarity,
Yyplu 18 @ kp X oo semi-infinite dimensional block matrix whose rank is non-
decreasing with respect to the future prediction horizon k. We then define a state
vector to derive an innovation model for the system with exogenous inputs.
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Suppose that the conditional covariance matrix X';,|,, has finite rank, so that we
assume rank(X,|,) = n. It follows from Lemma 10.1 that the conditional covari-
ance matrix is expressed as

o = B{F(0) — BLFW) |0 p0) — Ep(t) | 163"
= B{E(f | D) ()(E(p | wb)(1)") (10.18)

Also, the conditional covariance matrices X'y |, and X

pplu are defined similarly. Let
the Cholesky factorizations be given by

Sip=LLY,  Z.=MM"

pplu
and define
er(t) :=LT'E(f |up)(®),  e—(t):= M7 E(p|up)(t)

Then, we have
E{e (8l (1)} = L7 Tpp M "

where the right-hand side of the above equation is the normalized conditional covari-
ance matrix.
Consider the SVD of the normalized conditional covariance matrix

L' S M~ T =UzVT (10.19)
where UTU = I,,, VTV = I,,, and where ¥ is a diagonal matrix of the form
Y =diag(o1, -+, 0n), 1>01>-->0,>0
We define two n-dimensional vectors as
alt) == VIM B |ub)t),  A():=UTLE(f |ub)#)  (10.20)
Then it can be shown that
E{a(t)a™(t)} = E{B0A" ()} = I,  B{B(1)a™ ()} = T

Thus, comparing with the definition of canonical correlations in Subsection 8.5.1,
we see that oy, - -- , 0, are conditional canonical correlations between the future
f(t) and the past p(t) given the future input uy(t). Also, a(t) and S(t) are the
corresponding conditional canonical vectors.

According to the method of Subsection 8.5.1, the extended observability and
reachability matrices are defined by

O := LUX'/?, Coo 1= X2V T YT (10.21)

where rank(O) = rank(Cs) = n. Thus from (10.19), the conditional covariance
matrix X', has a factorization
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Ziplu = (LU (ZPVTMT) = 04C
Define the n-dimensional state vector as

a(t) = Co I p(t) = SV M p(1) (10.22)

rp

Then, it can be shown that z(t) is a basis vector of the predictor space
X = B {97 190 (10.23)

In fact, it follows from (10.11) and (10.22) that the oblique projection of the future
f(t) onto the past P, along the future inputs U;" is given by
Bl {1(0) | 97} = Tp(t) = S0 5, () = Oper(t) (10.24)

rp

where the covariance matrix of z is positive definite. Indeed, from (10.22),
E{zt)z¥(t)} = 2V2VITM s, M~ vV £1/?

> SVPVTMT R, MTTVEY? = 8 >0
Note that if there are no exogenous inputs, the state covariance matrix is exactly the
canonical correlation matrix as discussed in Section 8.5.

Using the state vector  defined above, the optimal predictor of (10.9) is then
expressed as

Ft]t) = Or(t) + Truy () (10.25)

This equation shows that given the future input u. (¢), the state vector x(t) carries
information necessary to predict the future output f(¢) based on the past P, .
The property of x defined by (10.22) is summarized below.

Lemma 10.4. Given the future inputs, the process {x(t), t = 0, £1, - - -} defined
above is a Markov process satisfying

B {o(t + 1) | 97} = B {o(t+ 1) | 77}, h=1,2,--
where DC;H_ is the predictor space defined by (10.23).
Proof. Rewriting the formula (10.25) for ¢ — ¢ + h yields
gt+h|t+h)
Gt +h+1|t+h)
. = Orz(t + h) + Yrup(t+ h) (10.26)
Gt +h+k—1]t+h)

where (I | t + h),l = ¢t + h,-- - denotes the optimal estimate of y(!) based on the
observations up to time ¢ + h — 1 and the inputs after ¢t + h. Also, K — k + h in
(10.25),



(

g(t 1)

gt+h—1]1)
§(t+h | t)

Lg](t+h+'k—1|t)_
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u(t)

u(t—f-'h—l)

u(t + h) (10.27)

= (‘)h+kx(t) + Uik

lu(t+h+k—1)

Since Oy, has full column rank, the last k block rows of O € RFPX™ is written as

Onjr = Ok Ap,

Ah € RX7™

Also, the last k block rows of ¥, . is expressed as

( Gy o e Go 0
Ghyr Gp - - Go
Uhip = :
G e
Hence, we can write the last & block rows of (10.27) as
gt +h|t) u(t)
u(t+1)

gt+h+1]¢)

= OkAh.iL'(t) + Wh\k (1028)

gt +h+k-1]1) ]

u(t+h+k—1)

From the definition of f(¢ | ¢) and the property of oblique projection, it can be
shown that

Epa{gt+h+ 1t +h) | P} = Epe{gt +h+1]0) | P}

holds for{ = 0,1, - - -. Thus, by applying the operator Euuj{ - | P; } on both sides
of (10.26) and (10.28), we have

OkEHuj {et+h) | P/} = OkAhEnujr {z() | Py} = OrApz(t)
Since O}, has full rank, it follows that
B ot +0) | P7} = Apa(t) € X/~
Also, applying the operator EA'”utJr{ St / "~} to the above equation yields
B { B Azt + 0) | 2710} = Ana(t) = By {a(t + ) | 97}

where the left-hand side of the above equation reduces to EA'”utJr {x(t+h) | XS / -}

by using DC;F/ ~ C P, . This completes the proof. O
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Remark 10.1. The state vector defined by (10.22) is based on the conditional CCA,
so that it is different from the state vector defined for stationary processes in Subsec-
tion 8.5.1. According to the discussion therein, it may be more natural to define the
State vector as

2¢(t) = ZY2a(t) = €21 E(p | ut)(t)

pplu

in terms of the conditional canonical vector «(t) of (10.20), where cov{z‘(t)} = X.
It should, however, be noted that we cannot derive a causal state space model by using
the above z°(t). In fact, defining the subspace Py := E{P; | (U )1}, it follows
that P, v U = j’{ @ ;. Thus we obtain the following orthogonal decomposition

1) =B{f@) | Py vUTY = E{f(t) | Py @ U}
= E{f(t) | P7} + E{f(t) | U}

From P; = span{E(p | uy)(t)}, the first term in the right-hand side of the above
equation becomes

E{f(t) | 7} = E{fO[E® | up)(®)]"}
x (cov{E(p | ug)()}) " E(p | uz)(?)
= Zppu(Zppp) T E(p | up) () = O (1)
Thus, though similar to (10.25), we have a different optimal predictor
FE 1) = O0rac(t) + Pru(t) (10.29)
where ¥, is a non-causal operator defined by
Dyuy () : = E{f(1) | U}
= B{f(t)us(t)" }(B{us (t)us ()T} tup (1)

This implies that being not a causal predictor, z°(t) of (10.29) cannot be a state
vector of a causal model. O

We are now in a position to derive the innovation representation for a stochastic
system with exogenous inputs.

10.4 Innovation Representation

In this section, by means of the state vector z of (10.22) and the optimal predictor
F(t| t) of (10.25), we derive a forward innovation model for the output process y.

Let U; = spanfu(t)} be the subspace spanned by u(t). From Lemma 10.3,
showing the causality of the predictor, the first p rows of (10.25) just give the one-
step prediction of y(t) based on P, V Uy, so that we have
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4(t) = E{y(t) | P, VU
= E{y(t) | Py VU, } = Ca(t) + Du(t) (10.30)

where C' € RP*™ and D € RP*™ are constant matrices. Since, from the proof of
Theorem 10.1, P, N U; = {0}, the right-hand side of (10.30) is a unique direct sum
decomposition. Define the prediction error as

e(t) == yt) — E{y(t) | Py v U} (10.31)
Then, the output equation is given by
y(t) = Cx(t) + Du(t) + e(t) (10.32)

Since the projection E{y(t) | ;" V U,} is based on the infinite past and (u, y) are
jointly stationary, the prediction error e is also stationary. Moreover, from (10.31),
the prediction error e(t) is uncorrelated with the past output {y(t—1), y(t—2), --- }
and the present and past inputs {u(t), u(t —1), --- },sothate(t) L (J; V U ).
Since e(t +1) L (Y;,,1 VU, ), it follows from (10.31) that

e(t) € Py = (Ui VUL, C (U VULL)

This implies that e(¢ + 1) L e(t), and hence e is a white noise.
Now we compute the dynamics satisfied by x(¢). To this end, we define

w(t) =t +1)— E{z@t+1) | X[/~ v} (10.33)

where T)CZL/_ = span{z(t)}. Since DC;F/_ C P;, and hence T)CZL/_ N U, = {0}, the
second term of the right-hand side of the above equation can be expressed as a direct
sum of two oblique projections. Thus there are constant matrices A € R™*" and
B € R™*™ satisfying

El{a(t+1) | X/~ vVU} = Az(t) + Bu(t) (10.34)
Thus the state equation is given by
z(t+ 1) = Az(t) + Bu(t) + w(t)

Finally, we show that w in the right-hand side of the above equation is expressed
in terms of the innovation process e.

Lemma 10.5. The prediction error w(t) is a function of e(t). In fact, there exists a
matrix K € R"*P such that

w(t) = Ke(t) (10.35)
where K = E{w(t)e™ (t)}(cov{e(t)}) .
Proof. Since z(¢+ 1) is a function of {y(¢), u(t),y(t—1),u(t —1),- - - }, it follows
from (10.34) that



284 10 Subspace Identification (2) — CCA
Az(t) + Bu(t) = E{a(t + 1) | X/~ v U}
= B Aot +1) | X7} + B - {a(t + 1) | W)

From Lemma 10.4 (with h = 1), the first term in the right-hand side of the above
equation is given by

By ot +1) | X7} = B {a(t + 1) | Py} = Ax(t) (10.36)
Define E||T; {z(t +1) | Uy} := Byu(t). Then, it follows that
E{x(t+1) | P7 VU, } = Az(t) + Byu(t)
Since (T)Cj/_ VU C(Py VU, we obtain
E{z(t+1)| % vU,} = E{E{x(t +1) | P VU ‘xj/* \/ut}
The left-hand side is Az(t) + Bu(t), while the right-hand side is
E{Az(t) + Biu(t) | X;/~ vV U} = Az(t) + Byu(t)
so that Byu(t) = Bu(t) holds for any u(t), implying that B; = B. Thus we have
E”x:r/_{:r(t +1) | W} = Bu(t) = By {z(t + 1) | U} (10.37)
Combining (10.36) and (10.37) yields
Bla(t+1) | 077 VWY = By {o(t +1) | 97} + By {(t+1) | U}
= E{z(t+1)| P, VU}
= B{a(t+1) | Y7 V Uz}
Thus from (10.33), w(¢) is also expressed as
w(t) =zt +1) — E{z(t+1) | Y7 VUL, }

so that w(t) € P, is orthogonalto Y, vV U, ;.
On the other hand, the subspace P, ; can be expressed as
thrl L= span{y(t), y(t - 1)7 ey u(t)a u(t - l)a t }
= span{e(t), y(t - 1): R u(t)a U(t - 1)7 o }
= span{e(t)} & (Y; VU ,)

It therefore follows that w(t) is expressed as a function of e(t). The matrix K is
obtained by w(t) = E{w(t) | e(t)} = Ke(t). O
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Summarizing the above results, we have the main theorem in this chapter.

Theorem 10.2. Suppose that Assumptions 10.1 and 10.2 are satisfied. If the rank
condition rank(X',|,,) = n holds, then the output y is described by the following
state space model

x(t+ 1) = Az(t) + Bu(t) + Ke(t) (10.38a)

y(t) = Cx(t) + Du(t) + e(t) (10.38b)

This is a forward innovation model with the exogenous input u, and the state vector
x is an n-dimensional basis vector of the predictor space T)Cj /= given by (10.23). O

Thus, it follows from (10.38) that the input and output relation is expressed as in
Figure 10.3, where

P(z) =D+ C(2I - A)~'B
H(z)=I,+C(zI - A) 'K

Since the plant P(z) and the noise model H(z) have the same poles, we cannot
parametrize these models independently. This result is due to the present approach
itself based on the conditional CCA with exogenous inputs.

Figure 10.3. Transfer matrix model

From the Kalman filtering theory, we see that all other minimal representations
for the output y are given by

z(t+1) = Az(t) + Bu(t) + Fou(t) (10.39a)
y(t) = Cz(t) + Du(t) + Ju(t) (10.39b)

where v is a zero mean white noise with covariance matrix I, (¢ > p). The matrices
F € R"™ and J € RP*? are constant, and A, B, C, D are the same as those
given in (10.38)'. Also, the state vector = of the innovation model of (10.38) is the
minimum variance estimate for the state vector z(t) of (10.39), i.e.,

w(t) = E{=(t) | Py VU = E{=(t) | 7'}

The relation between F and J in (10.39) and K and R := E{e(t)e™ (t)} is already
explained in Section 5.4.

'See Subsection 7.3.1, where the size of spectral factors associated with Markov models
are discussed.
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10.5 Stochastic Realization Based on Finite Data

In practice, the computations must be performed based on finite input-output data,
and the construction of the innovation model should be based on the predictor of the
future outputs obtained by the available finite data.

Suppose that 7 < t < T and let ¢ be the present time. Let w(7), -+ ,w(t — 1) be
the truncated past vectors, and define the stacked vector

w(t —1)
pr(t) := v t:_Z) € R(t-7)dx1
w(r)

and let P, ;) denote the past data space spanned by the above vector p,(t). The
symbol U, 77 denotes the (finite) future input history after time ¢.
From these data we can form the finite-memory predictor at time ¢ as

Fo@t | t) = B{f(t) | Piry V U1y}
= B{f(t|t)| P V Ui}
= B 118 | Py} + Eyg o 1718 | U}

where f(t | t) is defined by (10.9). The following result, which we shall state without
proof, explains the role of the transient Kalman filter in finite data modeling; see also
Theorem 6 in [107] and Theorem 3 in [165].

Theorem 10.3. Suppose that Assumptions 10.1 and 10.2 are satisfied. If X'y, has
rank n, the process y admits a finite interval realization of the form

&, (t+1) = Az, (t) + Bu(t) + K(t)é,(t) (10.40a)
y(t) = Ci,(t) + Du(t) + é,(t) (10.40b)
where the state vector &, (t) is a basis in the finite memory predictor space
Xy = B{G 7 | Pl VU 11}
t: t [7,t) [t T]

and the process {é,(t), T <t < T} is the transient innovation of the output process
{y(t), 7 <t < T} with respect to Pi; 4y V Uy, 17

Proof. The result is proved by applying the Kalman filter algorithm to (10.39). See
the finite interval realization of [106, 107]. O

We briefly make a comment on the non-stationary realization stated in Theorem
10.3. We see that any basis Z,(t) € X; has a representation

B (t) = B{a(t) | Py VUpey},  t27T (10.41)
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where z(t) is a basis in the stationary predictor space X, /=, and hence Z-(t) is also
the transient Kalman filter estimate of z(t), the state vector of (10.39), given the data
Prr.t) V Up, 1y The initial state for (10.40a) is

2 (1) = E{2(7) | U, 17}

and the matrices A, B, C, D are the same as those in (10.38).
We define the error covariance matrix of the state vector z(¢) of the system

(10.39) as .
P(t) = E{[z(t) — 2+ (1)] [2(t) — 2- ()] '}
It thus follows from (5.66) that P(t) satisfies the Riccati equation
P(t+1) = AP(t)AT — (AP#)CT + FIT)(CP#)CT + JJT)™?
x (CP(t)AY + JF') + FF*
where P(7) = cov{z(7) — &,(7)}, and the transient Kalman gain is given by
K(t) = (AP@#)CT + FIJN(CPt)CT + JJT)™!

Also, if 7 — —o0, the state vector Z,(t) of the transient innovation model of
(10.40) converges to z(t). Moreover, P(t) converges to a unique stabilizing solution
of the ARE

P = APAT — (APCT + FJY)(CPCT + JJT)~!
x (CPAT + JFT) + FFT (10.42)

and hence K (t) convergesto K = (APCT + FJY)(CPC* + JJ')~ L

Remark 10.2. The conditional CCA procedure of Section 10.4 applied to finite past
data provides an approximate state vector Z,(¢) differing from z(¢) by an additive
initial condition term which tends to zero as 7 — —oc. In fact, from (10.41),

&7 (t) = Bl o 12) | Pl + By, {2(t) | Uy} (10.43)

Recall from (10.24) that z(t) = O1E Uz 1 () | P77} holds. Then the first term
in the right-hand side of the above equation is an oblique projection which can be
obtained by the conditional CCA of the finite future and past data.

Since z(t) € P, holds, the second term in the right-hand side of (10.43) tends to
zero for 7 — —oo by the absence of feedback, and hence the oblique projection of
x(t) onto the future Uy, 7] along the past P, ;) tends to the oblique projection along
P, , which is clearly zero. O
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10.6 CCA Method

In this section, a procedure of computing matrices I1;, and ¥}, based on finite input-
output data is developed. A basic procedure is to compute approximate solutions of
the discrete Wiener-Hopf equations of (10.10), from which we have

Iy = Zppu(Zpppa) € RIPXK (10.44)
T = Zpo)p(Zuupp) ' € REPIM (10.45)

Once we obtain 11, and ¥y, subspace identification methods of computing the system
parameters A, B, C, D, K are easily derived.

Suppose that finite input-output data u(t), y(t) fort = 0,1,--- ,N + 2k — 2
are given with NV sufficiently large and k positive. We assume that the time series
{u(t), y(t)} are sample values of the jointly stationary processes (u, y) satisfying
the assumptions of the previous sections, in particular the finite dimensionality and
the feedback-free conditions. In addition, we assume throughout this section that the
sample averages converge to the “true” expected values as N — oco.

Recall that d = p + m, the dimension of the joint process (u,y). Define the
kd x N block Toeplitz matrix with NV columns

wk—1) wk) - wk+N-=2)

y wk—2)wk—-1)-- wlk+ N—-23)
Wolk—1 = ) . . € RF*N

w0)  w(l) - w(N-1)

where Wo\k—l denotes the past input-output data. Also, define block Hankel matrices

wk) wk+1) - u(k+N—-1)]
uk+1) u(k+2)--- wu(k+N) .
Ukjak—1 := : : : € RFmX
W@k —1) u(2k) - u(N +2k—2) ]
and
y(k) yk+1) - ylk+N-1)]
ylk+1) ylk+2)--- yk+N) N
Yijor—1 = : : : € RkPX
Y@k —1) y(2k) --- y(N +2k—2) ]|

where Upar—1 and Yy ox—1 denote the future input and the future output data, re-
spectively.

In the following, we assume that the integer & is chosen so that k£ > n, where n
is the dimension of the underlying stochastic system generating the data. Also, we
assume that the input is PE with order 2k, so that Up|2_1 has full row rank. Consider
the following LQ decomposition:
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Ukj2k—1 Ri1 0 0 QT i
Wojk—1 | = | Ra1 Rz 0 QT | = RQ* (10.46)
Rs1 Rso Rz | | QF

where R, € Rkmxkm Ro, ¢ Rkdxkd  R.. ¢ RFPXFP are block lower triangular,
and matrices @; are orthogonal with Q1 Q; = I6;;.
By using (10.46), we have

Zuw Zup Sy ) Ukjak—1 | | Ukj2r—1
Dpu Lpp Lipy | = N Wo|r—1 Wor—1 | =RR"
Hru Xy Xsi Yipor—1 | | Yej2x—1

It therefore follows that X, = R11 Ry}, ¥y = R Ry, ¥ = Ra1 Ry, and
Xpp = Ro1R5) + R Ry, 2tp = Rs1 Ry, + Ry Ry,
Yis = Ra1R3, + Ras Ry, + R3s Ry,

From the definition of conditional expectation of Lemma 10.1, we get

Zipte = Erp — YpuLis Xup = ReaR3y + RasRi; (10.47a)
Soplu = Zpp = ZpuZd Sup = Raa Ry, (10.47b)
il = Zpp = LruZyd Zup = Rga Roy (10.47¢)

Lpulp = Xfu — Epr;I}Epu

= Ry1RY, — (R31 R}, + R32Ry,) X7 Roy R (10.47d)
Euulp = Euu - EupE;plEpu

= RuR{, - RuR}, Y, Ry R}, (10.47¢)

It should be noted here that Y/, is positive definite by the PE condition. Also, we

assume that X, and X, are positive definite.

Lemma 10.6. In terms of R;; of (10.46), 11}, and ¥y, are respectively expressed as
Iy = Ry Ry (10.48)
¥, = (Rs1 — Rs2R3y Ro1) Ry (10.49)

Proof. Since Rj,(R22R3,) ' = Ry, (10.48) is obvious from (10.44). We show
(10.49). It follows from (10.47d) and (10.47¢) that

Ztulp = Ra1R{} — (Rs1R3, + R3aRyy) Xy Ry R,y
= Rs1(Itm — Ry 5, Ro1)RYy — R3o R, 57! Roy Ry



290 10 Subspace Identification (2) — CCA
and Xy |p = Ri1(Ikm — R3, X7,  Ro1) RY, , respectively. From (10.45),

U = Do Zuulp)
= Rs1 R} — RsaR3, X7 Roy (I — R, X0 Rt )T Ry
= Rs1 Ry} — RsuRoy(Ikm — X, ' Rt Ry, ) ' 2 ' Roy Ry
= Ry1 Ry} — R32 Ry (Zpp — Ro1Ryy) 'Rt Ryy'
= (R31 — Ra2 Ryy(Roa Ryy) ™' Ro1) Ry
The right-hand side is equal to that of (10.49). O

Comparing the LQ decompositions of (10.46) and (6.59), we see that 11}, W0| E—1
and ¥j, obtained in Lemma 10.6 are the same as & of (6.65) and ¥}, of (6.66), respec-
tively. Thus, the present method based on the CCA technique is closely related to the
N4SID method. The following numerical procedure is, however, different from that
of the N4SID in the way of using the SVD to get the extended observability matrix.

In the following algorithm, it is assumed that the conditional covariance matrices
Xt plus Zpplus 2 fpu Of (10.47) have already been obtained.

Subspace Identification of Stochastic System — CCA Method

Step 1: Compute the square roots of conditional covariance matrices’

Zif=LLY, D =MM'

pplu
Step 2: Compute the normalized SVD [see (10.19)]
L' SpuM T =USVT = USVT
and then we get o
Diplu = LUSVTMT

where S is obtained by neglecting smaller singular values, so that the dimension of

A~

the state vector equals dim(.S).
Step 3: Define the extended observability and reachability matrices by [see
(10.21)] o o
Or =LUSY?,  €,=S872v'Mm"
Algorithm A: Realization-based Approach
Step A4: Compute A and C by

A=0k(p+1:kp,1:0)10,(1: (k—1)p,1:n)
C=0(1:p,1:n)

’In general, there is a possibility that t#u and/or X, are nearly rank deficient. Thus
we use svd to compute L and M rather than chol, and the inverses are replaced by the pseudo-
inverses.
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Step A5: Given A, C and ¥, of (10.49), compute B and D by the least-squares
method

Iy Opn ] U (1:kp,1:m

(0 Ok—l k( D, )

I, Opxn D Up(p+1:kp,m+1:2m)

0 Ok—? B =

w ‘ @ ((k—1)p+1:kp, (k—1)ym+1:km)
I, Opxn |

where O; = O(1: jp,1:n),j < k.

Remark 10.3. Comparing the LQ decompositions of (10.46) and (9.48), we observe
that since the data are the same except for arrangement, 232 of (10.46) corresponds
to [Laz La3] of (9.48). Thus the construction of the extended observability matrix is
quite similar to that of PO-MOESP [171]; see also Remark 9.3. It may be noted that
a difference in two methods lies in the use of a normalized SVD of the conditional
covariance matrix. O

We next present a subspace identification algorithm based on the use of the state
estimates. The algorithm until Step 3 is the same as that of Algorithm A.

Algorithm B: Regression Approach Using State Vector
Step B4: The estimate of the state vector is given by [see (10.22)]

X, = ekzp*pllum”/mk,l = SV M W, € RN

and compute matrices with N — 1 columns

Xk+1 :Xk(:,ZtN) Xk:Xk(t,].ZN—].)
Yk\k:Yk\k(3;1:N_1) 0k|k:U(t,1:N—1)

where X k+1, the state vector at time k + 1, is obtained by shifting X under the
assumption that £ is sufficiently large.

Step B5: Compute the estimate of the system matrices (A, B, C, D) by apply-
ing the least-squares method to the following overdetermined equations

-[e 2]+ ]

where p, € R*™*V=1) and p, € RP* V=1 are residuals.

Xit1
Yk

Step B6: Compute the error covariance matrices

Sww Zwe| _ 1 [pupy Pupe
Yew Zee | ~ N=1|peps  peplt
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and solve the Kalman filter ARE [see (8.83)]
P =APA" — (APCT + ¥,.)(CPCT + X..) " (APCT + 2,0)" + D
Then, by using the stabilizing solution, the Kalman gain is given by
K = (APC™ + 5,.)(CPCT + %,.)"!

where the matrix A — K C'is stable.
A program of Algorithm B is listed in Table D.6. O

The above procedure is correct for infinitely long past data and N — oo. For,
it follows from Lemma 10.5 that the exact relations X, = A = E{e(t)eT(t)},
Yow =KX..KT, Y. = KX.. should hold, so that the unique stabilizing solution
of the Kalman filter ARE above exists and is actually P = 0.

For the finite data case, these exact relations do not hold and the sample covari-
ance matrices computed in Step B5 vary with k and N. However, under the assump-
tion that the data are generated by a true system of order 7, if IV and k are chosen
large enough with NV > k, the procedure provides consistent estimates. It should be
noted that the Kalman filter ARE has a unique stabilizing solution P > 0 from which
we can estimate K. This is so, because by construction of the extended observability
matrix Oy, the pair (C, A) is observable and the covariance matrix of residuals is
generically nonnegative definite.

10.7 Numerical Examples

We show some numerical results obtained by the CCA method, together with results
by the ORT and PO-MOESP methods. We employ Algorithm B, which is based on
the use of the estimate of the state vector.

V2 V1

Figure 10.4. Simulation model

We consider the simulation model shown in Figure 10.4, from which the input-
output relation of the system is expressed as

y(t) = P(z)up(t) + v1(t), up(t) = u(t) + va(t) (10.50)

where v; and v2 are zero mean noises additively acting on the input and output
signals, respectively. The plant P(z) is the same as the one used in Section 9.8, and
is given by
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Figure 10.6. Identification results: (a) MOESP and (b) ORT

0.027527* + 0.05512~°

P =
(2) 1—2.34432=1 4 3.081272 — 2.5274273 + 1.24152—* — 0.36862 5

Case 1: We consider the case where a colored noise is acting on the output, i.e.,
v is colored noise and v, = 0. The plant input  is a white noise with mean zero
and variance o2 = 1, where the colored noise v; is an ARMA process generated by
vy = H(z)e, where the noise model is given by

1-0.2271 — 04822
H —
(2 = | 04214 0.82-2

and e is a zero mean white noise with variance az, whose value is adjusted so that
the variance of the colored noise becomes nearly o? = (0.01.

The Bode gain plots of transfer functions P(z) and H(z) are displayed in Figure
9.8 in Section 9.8%. In the CCA and PO-MOESP methods, which are based on the
innovation models, it is implicitly assumed that the plant and noise models have the
same poles. However, note that the plant and noise models have different poles in

3The simulation conditions of the present example are the same as those of the example
in Section 9.8; see Figures 9.9(b) and 9.10(b).
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the simulation model of Figure 10.4; this is not consistent with the premise of the
CCA and PO-MOESP methods. In fact, as shown below, results by the CCA and
PO-MOESP methods have biases in the identification results.

As mentioned in Chapter 9, however, the ORT method conforms with this sim-
ulation model, since the ORT is based on the state space model with independent
parametrizations for the plant and noise models. Hence, we expect that the ORT will
provide better results than the CCA and PO-MOESP methods.

Taking the number of data N = 1000 and the number of block rows k£ = 15,
we performed 30 simulation runs. Figure 10.5(a) displays the poles of the identified
plant by the CCA method, where + denotes the true poles of the plant, and * denote
the poles identified by 30 simulation runs. Figure 10.5(b) displays the Bode plots
of the identified plant transfer functions, where the true gain is shown by the solid
curve.

For comparison, Figure 10.6(a) and 10.6(b) display the poles of the identified
plants by the PO-MOESP and ORT methods, respectively. In Figures 10.5(a) and
10.6(a), we observe rather large biases in the estimates of the poles, but, as shown in
Figure 10.6(b), we do not observe biases in the results by the ORT method. Moreover,
we see that the results by the CCA method are somewhat better than those by the PO-
MOESP method.

Case 2: We consider the case where both v; and vy are mutually uncorrelated
white Gaussian noises in Figure 10.4, so that H(z) = 1.

First we show that in this case the model of Figure 10.4 is reduced to an innova-
tion model with the same form as the one derived in Theorem 10.2. It is clear that
the effect of the noise v2 on the output is given by P(z)vs, so that the input-output
relation of (10.50) is described by

y(t) = P(2Ju() +[1 P(2)] {Zlm (1051)

where the noise model is a 1 x 2 transfer matrix L(z) = [1 P(z)]; thus the poles
of the plant and the noise model are the same. Hence, the transfer matrix model of
(10.51) is a special case of the innovation model (see Figure 10.3)

y(t) = P(z)u(t) + H(2)e(?)
where H (z) is a minimum phase transfer matrix satisfying

a2 0

2 Jwy|2 Jw
A = 1) [T

} LT(e) = of + a3 |P(e*)?
with H(occ) = 1.

The transfer matrix H (z) can be obtained by a technique of spectral factorization.
In fact, deriving a state space model for the noise model L(z)v, and solving the ARE
associate with it, we obtain an innovation model, from which we have the desired

transfer function H(z). Thus, in this case, the model of Figure 10.4 is compatible
with the CCA method.
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Figure 10.8. Identification results by ORT

Numerical results by the CCA and ORT methods are displayed in Figures 10.7
and 10.8, respectively, where it is assumed that 0? = 0.01, 03 = 0.09, 02 = 1, and
the number of data N = 1000, the number of block rows k = 15. Since both v; and
v are white noises, we do not see appreciable biases in the poles of the identified
plants, though there are some variations in the estimates. This is due to the fact that
the present simulation model is fitted in with the CCA method as well as with the
ORT method.

In the simulations above, we have fixed the number of data /N and the number of
block rows k. In the next case, we present some simulation results by the CCA and
ORT methods by changing the number of block rows k.

Case 3: We present some simulation results by the CCA and ORT methods
by changing the number of block rows as k& = 8,10, 15,20, while the number of
columns of data matrices is fixed as N = 4000. The simulation model is the same
as in Case 2, where there exist both input and output white noises, and the noise
variances are fixed as 0? = 1 and 3 = 0.09.

We see from Figure 10.9 that the performance of identification by the CCA
method is rather independent of the values of k. Though it is generally said that a
sufficiently large k (> n) is recommended, the present results show that the recom-
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Figure 10.9. Identification results by CCA

mendation is not always true. We can thus safely say that the number of block rows
k should be chosen in relation to the number of columns .

Figure 10.10 displays the results of identification by the ORT method. In contrast
to the results by CCA method, the performance is improved by taking larger &, while
for small £ we see some variations in the poles of identified plant. These results
may be due to the fact that computation of the deterministic components by the LQ
decomposition is not very accurate if k gets smaller.

In this section, we have compared simulation results by using the CCA and ORT
methods. We observe that the performance of CCA method is slightly better than
that of PO-MOESP, where both methods are based on the innovation models. We
also conclude that the performance of the ORT method is better than that of the CCA
method, especially if we use a general noise model.

10.8 Notes and References

o In this chapter, we have described some stochastic realization results in the pres-
ence of exogenous inputs based on Katayama and Picci [90]. As in Chapter 9,
we have assumed that there is no feedback from the output to the input, and the
input has a PE condition of sufficiently high order.
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Figure 10.10. Identification results by ORT

e In Section 10.1, after stating the stochastic realization problem in the presence
of an exogenous input, we considered a multi-stage Wiener prediction problem
of estimating the future outputs in terms of the past input-output and the future
inputs. This problem is solved by using the oblique projection, and the optimal
predictor for the future outputs is derived in Section 10.2.

e In Section 10.3, by defining the conditional CCA, we have obtained a state vector
for a stochastic system that includes the information contained in the past data
needed to predict the future. In Section 10.4, the state vector so defined is em-
ployed to derive a forward innovation model for the system with an exogenous
input.

e In Section 10.5, we have provided a theoretical foundation to adapt the stochastic
realization theory to finite input-output data, and derived a non-stationary inno-
vation model based on the transient Kalman filter. In Section 10.6, by means of
the LQ decomposition and SVD, we have derived two subspace identification
methods. A relation of the CCA method to the N4SID method is also clarified.
In Section 10.7, some simulation results are included.

In the following, some comments are provided for the CCA method developed
in this chapter and the ORT method in Chapter 9, together with some other methods.
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The earlier papers dealt with subspace identification methods based on the CCA
are [100,101, 128]. The method of Larimore, called the CVA method, is based on
the solution of k-step prediction problem, and has been applied to identification
of many industrial plants; see [102] and references therein.

In the ORT method developed in Chapter 9, as shown in Figure 10.11, we start
with the decomposition of the output y into a deterministic component yg € U
and a stochastic component y, € U™, thereby dividing the problem into two
identification problems for deterministic and stochastic subsystems. Hence, from
the point of view of identifying the plant, the ORT method is similar to determin-
istic subspace identification methods, and the identification of the noise model is
a version of the standard stochastic subspace identification method for stationary
processes.

Ys

0 > u
Yd

Figure 10.11. Orthogonal decomposition

On the other hand, the CCA method is based on the conditional canonical cor-
relations between the future and the past after deleting the effects of the future
inputs, so that this method is regarded as an extension of the CCA method due to
Akaike [2, 3], Desai et al. [42,43], and Larimore [100, 101].
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Identification of Closed-loop System

This chapter discusses the identification of closed-loop systems based on the sub-
space identification methods developed in the previous chapters. First we explain
three main approaches to the closed-loop identification. Then, in the framework of
the joint input-output approach, we consider the stochastic realization problem of
the closed-loop system by using the CCA method, and derive a subspace method of
identifying the plant and controller. Also, we consider the same problem based on the
ORT method, deriving a subspace method of identifying the plant and controller by
using the deterministic component of the joint input-output process. Further, a model
reduction method is introduced to get lower order models. Some simulation results
are included. In the appendix, under the assumption that the system is open-loop
stable, we present simple methods of identifying the plant, controller and the noise
model from the deterministic and stochastic components of the joint input-output
process, respectively.

11.1 Overview of Closed-loop Identification

The identification problem for linear systems operating in closed-loop has received
much attention in the literature, since closed-loop experiments are necessary if the
open-loop plant is unstable, or the feedback is an inherent mechanism of the system
[48, 145, 158]. Also, safety and maintaining high-quality production may prohibit
experiments in open-loop setting.

The identification of multivariable systems operating in closed-loop by subspace
methods has been the topic of active research in the past decade. For example,
in [161], the joint input-output approach is used for deriving the state space mod-
els of subsystems, followed by a balanced model reduction. Also, based on a sub-
space method, a technique of identifying the state space model of a plant operating in
closed-loop has been studied by reformulating it as an equivalent open-loop identifi-
cation problem [170]. In addition, modifying the N4SID method [165], a closed-loop
subspace identification method has been derived under the assumption that a finite
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» H(z)
+
TtQ“.P(z) 5 L
C(z)

Figure 11.1. A feedback system [48]

number of Markov parameters of the controller are known [167]. And, a subspace-
based closed-loop identification of linear state space model has been treated by using
the CCA technique [34].

Figure 11.1 shows a typical feedback control system, where P(z), C(z), and
H (z) denote respectively the plant, the controller and the noise model, and where 7 is
the exogenous input, u the control input, and y the plant output, v the unmeasurable
disturbance. A standard closed-loop identification problem is to identify the plant
based on the measurable exogenous input r and the plant input « and output y.

A fundamental difficulty with closed-loop identification is due to the existence
of correlations between the external unmeasurable noise v and the control input .
In fact, if there is a correlation between u and v, it is well known that the least-
squares method provides a biased estimate of the plant!. This is also true for subspace
identification methods. Recall that we have assumed in Chapters 9 and 10 that there
is no feedback from the output y to the input u, which is a basic condition for the
open-loop system identification.

We review three approaches to closed-loop identification [48, 109]. The area of
closed-loop identification methods can be classified into three groups.

1. Direct Approach Ignoring the existence of the feedback loop, we directly ap-
ply open-loop identification methods to the measurable input-output data (u, y)
for identifying the plant P(z).

2. Indirect Approach Suppose that the exogenous input 7 is available for identifi-
cation, and that the controller transfer function C'(z) is known. We first identify
the transfer function 7T}, (z) from 7 to the output y, and then compute the plant
transfer function by using the formula

Ty (2)

P& =1 e,

(11.1)

3. Joint Input-Output Approach Suppose that there exists an input r that can be
utilized for system identification. We first identify the transfer functions T,..(2)
and T, (z) from the exogenous input r to the joint input-output (u, y), and then
compute the plant transfer function using the algebraic relation

IThis situation corresponds to the case where Assumption A1) in Section A.1 is violated.
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Tyr(z)
Tur(z)

We shall now provide some comments on the basic approaches to closed-loop

P(z) = (11.2)

identification stated above.

It is clear that the direct approach provides biased estimates. However, since the
procedure is very simple, this approach is practical if the bias is not significant.
In order to overcome the difficulty associated with the biases, modified methods
called two stage least-square methods and the projection method are developed
in [49, 160]. The basic idea is to identify the sensitivity function of the closed-
loop system by using ARMA or finite impulse response (FIR) models, by which
the estimate @ of the input u is generated removing the noise effects. Then, the
estimated input u and the output y are employed to identify the plant transfer
function using a standard open-loop identification technique.

For the indirect approach, the knowledge of the controller transfer function is
needed. However due to possible deterioration of the controller characteristics
and/or inclusion of some nonlinearities like limiter and dead zone, the quality of
the estimates will be degraded. Moreover, the estimate of P(z) obtained by (11.1)
is of higher order, which is typically the sum of orders of Ty, (z) and C(z), so
that we need some model reduction procedures. There are also related methods of
using the dual Youla parametrization, which parametrizes all the plants stabilized
by a given controller. By using the dual Youla parametrization, the closed-loop
identification problem is converted into an open-loop identification problem; see
[70,141,159] for details.

The advantage of the joint input-output approach is that the knowledge of the
controller is not needed. However, the joint input-output approach has the same
disadvantage as the indirect approach that the estimated plant transfer functions
are of higher order. It should also be noted that in this approach we should deal
with vector processes even if we consider the identification of scalar systems. In
this sense, the joint input-output approach should be best studied in the frame-
work of subspace methods.

11.2 Problem Formulation

11.2.1 Feedback System

We consider the problem of identifying a closed-loop system based on input-output
measurements. The configuration of the system is shown in Figure 11.2, where
y € RP is the output vector of the plant, and v € R™ the input vector. The noise
models H(z) and F(z) are minimum phase square rational transfer matrices with
H(o0) = I, and F'(00) = I,,,, where the inputs to the noise models are respectively
white noises ¥ € RP and n € R™ with means zero and positive definite covariance
matrices. The inputs 7; € RP and 7o € R™ may be interpreted as the exogenous
reference signal and a probing input (dither) or a measurable disturbance.
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Figure 11.2. Closed-loop system

Let the plant be a finite dimensional LTI system described by
y(t) = P(z)u(t) + H(z)v(t) (11.3)

where P(z) is the (p x m)-dimensional transfer matrix of the plant. Also, the control
input is generated by

u(t) = ra(t) + C(2)[r (t) —y ()] + F(2)n(t) (11.4)

where C(z) denotes the (m x p)-dimensional transfer matrix of the LTI controller.
We introduce the following assumptions on the closed-loop system, exogenous
inputs, and noises.

Assumption 11.1. A1) The closed-loop system is well-posed in the sense that (u, y)
are uniquely determined by the states of the plant and controller and by the exoge-
nous inputs and noises. This generic condition is satisfied if I,, + P(0c0)C(cc) and
I,,, + C(00) P(00) are nonsingular. For the sake of simplicity, it is assumed that the
plant is strictly proper, i.e., P(occ) = Q.

A2) The controller internally stabilizes the closed-loop system.

T1

A3) The exogenous input r := [r ] € R? (d = p + m) satisfies PE condition,
2

and is uncorrelated with the noise x := [;} € RY; thus r1(t), m2(s), v(1), n(o)

are uncorrelated for allt, s, T, 0 € Z.

In the following, we consider the problem of identifying the deterministic part of
the closed-loop system, or the plant P(z) and controller C'(z), using the measurable
finite data {rq (t), r2(t), u(t), y(t), t =0,1,--- ,N —1}.

Remark 11.1. The identification of controller C'(z) may not be needed in applica-
tions. However, if the identified controller agrees well with the known controller
transfer function, this will be an evidence that the identification results are plausible.
Also, there are many chemical plants which contain recycle paths of energy and ma-
terials, so that the identification of closed-loop systems is very important from both
theoretical and practical points of view. O
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The objective of this chapter is to obtain state space models of the plant P(z) and
the controller C'(z) based on finite measurement data {r(t), r2(t), u(t), y(t)} by
using subspace identification methods. In the following, we present two closed-loop
identification algorithms based on the CCA and ORT methods. The first one, based
on the CCA method, is rather close to that of Verhaegen [170]. The second one,
based on the ORT method, is quite different from existing closed-loop idnetification
algorithms, including that of [170].

11.2.2 Identification by Joint Input-Output Approach

In order to obtain state space models of the plant and controller in closed-loop, we
use the joint input-output approach.
Define the joint input-output process

— Y d
w = [u} e R (11.5)

It then follows from Figure 11.2 that these signals are related by
W(t) = Twr(2)7(t) + Ty (2)x(t) (11.6)
where T, (z) and T, (z) are the closed-loop system transfer matrices defined by

P(2)Si(2)C(z) P(z)Si(2)

_ —Tyn(z) Tyrz(z) _
Ter®) = | 10 (2) Tum(z)] - [ S()0E) Si() } (17
and
T (2) = [Ty (2) Tyn(2)| _ So(2)H(z)  P(2)Si(2)F(z)
wx | Tur(2) Tun(2) —C(2)S,(2)H(z) Si(2)F(2)
and where

Si(2) = Im + C(2)P(2))™",  So(2) = (I + P(x)C(2)) ™"

are the input and output sensitivity matrices, respectively.

Recall that the feedback system is internally stable if and only if the four transfer
matrices in (11.7) are stable. Since r and x are uncorrelated in (11.6), there is no
feedback from w to r; hence we can employ open-loop identification techniques to
estimate the transfer matrix Ty (2) = [Twr, (2) Twr(2)], using measurements of
the input 7 and the output w.

In order to deal with a well-posed estimation problem, these transfer matrices
should be uniquely obtainable from the overall transfer matrix T, (2). It follows
from (11.7) that P(z) and C(z) are identifiable from

P(2) = Ty, (2)T1 (2), C(2) = Tyt (2)Tur, (2) (11.8)

ure ure

where the inverse exists because S;(z) is invertible. Hence, contrary to the indirect
approach [167], we do not need the knowledge of the controller, nor the auxiliary



304 11 Identification of Closed-loop System

input needed in the method based on the dual-Youla parametrization approach. It
should, however, be noted that in order that both P(z) and C(z) be uniquely identi-
fiable from the data, in general we need to have both signals r; and 75 acting on the
systemz.

In addition to Assumption 11.1 A1) ~ A3), we need the following.

Assumption 11.2. There is no feedback from the joint input-output process w to the
exogenous input r. O

11.3 CCA Method

In this section, we apply the CCA method developed in Chapter 10 to the closed-
loop identification problem of identifying the plant and controller based on the joint
input-output approach.

11.3.1 Realization of Joint Input-Output Process

It follows from Theorem 10.2 that the innovation model for the joint input-output
process w with the input r has the following form

sy =+ o0 2 [0 e ma [ e
[%H = {gi] =(t) + [Dom D(ZJ {28} + [28} (11.9b)

where the dimension of the state vector is generically the sum of the orders of the
plant and controller (n = n, +n.), and where D11 = 0, D12 = 0 from the condition
P(o0) = 0.

We see from (11.9) that the transfer matrices from r; to u and from r5 to ¥, u are
given by

(4 B [4 B, [4 B,
Tm—[c2 DZJ, Tm—[cl 0}, Tm_[@ DzJ (11.10)

Thus we have the following result.

Lemma 11.1. Suppose that a realization of the joint input-output process w is given
by (11.9). Then, realizations of the plant and controller are respectively computed by

A~ ByD3\Co B2D2_21} (11.11)

P(Z):[ oy 0

and

The case where one of the two signals is absent is discussed in [89].
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C(z) = (11.12)

A — ByD3,'Cy By — ByD3,' Doy
Dy, Oy Dyt Doy

Proof. Since P = T, T'=1, it follows from (11.10) that

Yyra-urg?

[AB)][4 B
P(z) = 1C1 0 } [02 D22}

[ A By [A— BaD3,' Cy BoDyy!
T lao -D3;'Cy Dy
[ A —ByD3'Co ByD3)
= | 0 A— ByDy,'Cy BaDsyy'
Ke 0 0

By the coordinate transform 7" = [I I , we obtain (11.11). Also, from the relation

o)
C =TT, , we can prove (11.12). O

urs

It may be noted that the matrix D-, should be nonsingular to compute the inverse
matrix above. This implies that the exogenous input r» must satisfy the PE condition.
Let the state space models of the plant and controller be given by

z,(t +1) = A,x,(t) + Byu(t) (11.13a)
y(t) = Cpz,(t) (11.13b)
and
zo(t+1) = Aczo(t) + Be[ri(t) — y(t)] (11.14a)
u(t) = ra(t) + Cexc(t) + Dc[ri(t) — y(t)] (11.14b)

where z, € R" and 2. € R"¢ are the state vectors of the plant and controller,
respectively. We show that the models of (11.11) and (11.12) are not minimal.

Lemma 11.2. Suppose that realizations of the plant and controller are respectively
given by (11.13) and (11.14). Then, the following realizations

4, 0 B,
P(z)= | -B.C, A. 0 (11.15)
c, 0 0

and

A, 0 0
C(z)= | -B,C, A. B, (11.16)
-p.C, C. D.]|

are input-output equivalent to realizations of (11.11) and (11.12), respectively.
Hence, the reachable and observable part of non-minimal realizations are the state
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space realizations of the plant and controller; respectively.
Proof. Combining (11.13) and (11.14) yields

A, - B,D.C, B,C. B,D, B,
_ -B.C, A, B. 0
Twr(2) = c, 0 00 (11.17)

_DcCp Cc DC Im

For simplicity, we define

1=t a] wom= [0 5] [6)= s el

Then, we have

A+BQCQ B> A"‘BQCQ B2
T T = ~ 3 Tur = =~
@)= [T = [T
1B, |
sothat T (2) = | & . Thus, it follows that
2 02 I7n
A 0 —Bs
P(2) = Ty, (2) T3,k (2) = | 5acs 2+ B,y B | - [g‘ f”
[ 0 Ch 0 )
| I0 1 _|I0 .

Let S = [—I I],andS = [I I].Then,weobtam

i o _B .

-1 _ 0 —1p _ 2 —_
S AsS_[OA—kBQCQ]’ ST B, [ 0 }, C;S=[-C C1]
It therefore follows that
A 0 —Bs -
Piz)=| 0 A+ByCy 0 :[é} ]‘ZQ]
-C G 0 !
The right-hand side is equal to (11.15). Similarly, for a proof of (11.16), we can use
A+ ByCy By i 4

Tur (2) = o D obtained from (11.17) and C(z) = Ty, (2)Ty,. (2).

2 c

For the realization (11.15), it follows from Theorems 3.4 (ii) and 3.7 (ii) that the
rank conditions

2I1-4, 0 B,

rank[ B.C, 2I-A, 0

} < np + ne, z € MAL)

and
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2I—4, O
rank | B.C, zI—A.| <np+ne, z € MAL)
C, 0

hold, implying that there are n. pole-zero cancellations in the realization of P(z).
Thus, this realization is unreachable and unobservable. Hence the reachable and ob-
servable part of the realization (11.15) will be a relevant state space realization of the
plant. For the realization (11.16) of the controller, it can be shown that there exist n,,
pole-zero cancellations. O

Since a strict pole-zero cancellation does not exist in the realizations of (11.11)
and (11.12), which are identified by using finite data, we see that the dimension of
the state space realizations are of higher dimension with n := n,, +n.. It is therefore
necessary to obtain lower order models from higher order models by using a model
reduction procedure. This problem is treated in Section 11.5.

11.3.2 Subspace Identification Method

We describe a subspace identification method based on the results of Section 10.6.
Letr1(t), r2(t), u(t), y(t), t=0,1,---, N + 2k — 2 be a set of given finite data,
where N is sufficiently large and £ > n. Recall that the exogenous inputs and the

joint input-output w are defined as r(t) = {Tl (t)} € RY and w(t) = {y(t)} € R?,

r2(t) u(t)

where d = p + m.

Let k be the present time. Define the block Toeplitz matrix formed by the past
data as
wk —1) w(k) - wk+ N —2)
r(k—=1) r(k) --- r(k+ N —2)
p0|k71 — 3 Do ‘ € R2kdxN
w(0) w(l) -+ w(N-1)
r(0) r(1) - r(N-1)

Similarly, the block Hankel matrices formed by the future of r and w are respectively
defined as

r(k) rk+1) - r(k+N-1)

P r(k + 1) r(k + 2) -+ r(k + N) € RhOxN
P2k —1) #(2k) - #(N +2k—2)
and
wk) wk+1)-- wk+N-1)
Wi = w(k:+ 1) w(k:+ 2) - w(k:+N) ¢ REAXN

w@k—1) w@k) - w(N+2k—2)
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We consider the LQ decomposition

1 }zvk\Qkfl R11 0 0 err _
JN Pojr—1 | = | R21 Raz 0 T| = RQT (11.18)
Whj2k—1 R31 R3o Rss ¥

where Ry, € Rk>kd R, € R2kdx2kd  R., c RF4>kd are Jower block triangular
and (); are orthogonal. Then, the conditional covariance matrices are given by

Eww\r = R32R3T2 + R33R3T3; Epp|'r‘ = R22R;Fg; Ewp\r = R32R2Tz

The following closed-loop subspace identification algorithm is derived by using
Algorithm B of Section 10.6.

Closed-loop Identification —- CCA Method

Step 1: Compute the square root matrices such that
Zwwlr =LLT, Zpplr = MMT
Step 2: Compute the SVD of a normalized covariance matrix by
L7 8y, M~ =USVT = USVT
where S is obtained by deleting smaller singular values of .S.
Step 3: Define the extended observability and reachability matrices as
Op = LUSY?, @, =SY2VTMT
Step 4: Compute the estimate of state vector by
X=X Pojer = SRV M Py
and form the following matrices with N — 1 columns
X1 = Xp(5,2: N), Xe=Xp(,1: N —1)
Wk|k =Wi(,1: N —1)

Step 5: Compute the estimates of the matrices (4, B, C, D) by applying the
least-squares method to the regression model

][]
Wk|k CD Rk|k Pe
Step 6: Partition the matrices B, C, D as
Ci 0 O
B =B, B C= D=
[ 1 2]: |:C2:|7 |:D21 D22:|

and compute the higher order models P(z) and C(z) of the plant and controller by
the formulas (11.11) and (11.12), respectively.

Step 7: Compute lower dimensional models by using a model reduction algo-
rithm (see Section 11.5).
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11.4 ORT Method

In this section, we develop a closed-loop subspace identification method based on
the ORT method derived in Chapter 9.

11.4.1 Orthogonal Decomposition of Joint Input-Output Process

As usual, we introduce Hilbert spaces generated by the exogenous inputs and by the
joint input-output process, which are respectively denoted by

R =span{r(r) |7 =0, £1, --- }, W = span{w(r) | 7 =0, £1, ---}

We also define Hilbert subspaces spanned by the infinite past and infinite future of
the various processes at the present time ¢ as

Ry =span{r(r) | T < t}, Wy = span{w(r) | T < t}
and
R :=span{r(r) | T > t}, Wi :=span{w(r) | 7 >t}

These are all subspaces of the ambient Hilbert space H := R V ‘W spanned by the
observable input and output processes (7, w).

Since there is no feedback from w to r, the future of r is conditionally uncorre-
lated with the past of w given the past of 7. From Theorem 9.1 (ii), this feedback-free
condition is written as

E{w(t) | R} = B{w(t) | R;y1},  t=0,£1, - (11.19)

implying that the smoothed estimate of w based on r is causal.
It follows from (11.19) that

(t)
(t)

where Rt is the orthogonal complement of R in I, and w; is called the stochastic
component of w. Similarly,

E{w(t) | Ripr)
E{w(t) | R} = E{w(t) | R}

ws (t) -

w
w

wa(t) = E{w(t) | R}

is called the deterministic component of w. The deterministic component wy is the
part of w that can be linearly expressed in terms of the exogenous input r.

As in Section 9.4, we obtain the orthogonal decomposition of the joint input-
output process w = wq + Ws, ie.,

} + {ys(t)] (11.20)
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where the deterministic and stochastic components are mutually uncorrelated, so that
we see from Lemma 9.3 that

E{ws(t)wdT(T)} =0, Vt, =0, %1, ---

Applying this orthogonal decomposition to the feedback system shown in Figure
11.2, we have equations satisfied by the deterministic and stochastic components.

Lemma 11.3. The deterministic and stochastic components respectively satisfy the
decoupled equations

ya(t) = P(2)ua(t) (11.21a)

ua(t) = ra(t) + C(2)[r1(t) — ya(t)] (11.21b)
and

ys(t) = P(2)us(t) + H(2)v(t) (11.22a)

us(t) = —C(2)ys(t) + F(2)n(t) (11.22b)

Proof. From (11.3), (11.4) and (11.20), we have
ya(t) + ys(t) = P(2)[ua(t) + us(t)] + H(z)v(t)
ua(t) + us(t) = ra(t) + C(2)[r1(t) — ya(t) — ys(t)] + F(2)n(t)

Since v, 1, ys, us are orthogonal to R, the orthogonal projection of the above equa-
tions onto R and R+ yields (11.21) and (11.22), respectively. O

We can easily see from (11.21) that

ya(t) | _ | P(2)Si(2)C(2) P(2)Si(z) | |r1(t)
Ud(t) o

Si(2)C(z) Si(2) ro(t)
Since the transfer matrices in the right-hand side of (11.23) are the same as those of
(11.7), the transfer matrices of the plant and the controller can be obtained from a
state space realization of the deterministic component w,.
We can draw some interesting observations from Lemma 11.3 for the decoupled
deterministic and stochastic components.

(11.23)

1. We see that the realizations of deterministic and stochastic components can be
decoupled, since the two components are mutually uncorrelated. It should be,
however, noted that though true for infinite data case, the above observation
is not true practically. This is because, in case of finite input-output data, the
estimate of the stochastic component w; is influenced by the unknown initial
condition associated with the estimate of the deterministic component wy as
discussed in Section 9.6. However, the effect due to unknown initial conditions
surely decreases for a sufficiently long data.
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2. Suppose that P(z) and C(z) are stable. Then, we can apply the ORT method
to the deterministic part (11.21) to obtain state space realizations of P(z) and
C(z); see Appendix of Section 11.8. In this case, we also show that the noise
models H(z) and F'(z) can be obtained from the stochastic part (11.22).

3. If P(z) and/or C(z) is open-loop unstable or marginally stable, we cannot fol-
low the above procedure, since the deterministic (or stochastic) subspace method
applied to (11.21) yields erroneous results. For, it is impossible to connect the
second-order stationary processes u4 and y4 (or us and y) by an unstable trans-
fer matrix P(z). Moreover, controllers in practical control systems are often
marginally stable due to the existence of integrators implemented. In this case,
we need the joint input-output approach as show below.

11.4.2 Realization of Closed-loop System
Suppose that for each ¢ the input space R admits the direct sum decomposition
R=R+R7, R'NnR =0

An analogous condition is that the spectral density matrix of r is strictly positive
definite on the unit circle, i.e., Y. (w) > ¢lq, 3 ¢ > 0 or all canonical angles between
the past and future subspaces of r are strictly positive. As already mentioned, in
practice, it suffices to assume that r satisfies a sufficiently high order PE condition,
and that the “true” system is finite dimensional.

Let W be spanned by deterministic component wq. Let Wj denote the subspace
generated by the future wy(7), 7 =, t + 1, - - - . According to Subsection 9.5.2, we
define the oblique predictor subspace as

X[/ = B (W | R} (11.24)

This is the oblique projection of Wf onto the past R, along the future R;", so that

T)Ct+ /~ is the state space for the deterministic component. Clearly, if 7 is a white noise
process, (11.24) reduces to the orthogonal projection onto R; .

Let the dimension of the state space T)Cj /~ be n, which in general equals the sum
of the orders of the plant and the controller. From Theorem 9.3, any basis vector

zq(t) € DC:F/ " yields a state space representation of wg(t), i.e.,

za(t +1) = Azq(t) + [B1  Ba]r(t) (11.25a)

][]0 [ )0

where A € R"*™. Since P(z) is assumed to be strictly proper, we have Dy; = 0,
D5 = 0. Also, from the configuration of Figure 11.2, Doy = I,,, and Doy = D,
hold. It therefore follows from (11.25) that the transfer matrices of the closed-loop
system are given by
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A By B,
Tyri (2) Tyro(2) |
[Tm 2) Tm(z)] - {g; D(; quj

Hence, from (11.7), we have Ty, (2) = P(2)Tur, (2) and Ty, (2) = Toupo (2
so that the plant and the controller are computed by P(z) = Ty, (2) *é (z) and
C(2) = T;1(2)Tur, (2), respectively.

urg

Lemma 11.4. Let det Doy # 0. Then, the (non-minimal) realizations of the plant
and controller are respectively given by

A — ByDy,' Cy BoDsyyt

P(z) = e e T (11.26)
o 0
and
A = ByDys' Cy By — BaDyy' D

O(z) = 2o e e (11.27)

D22 Cs D22 Do
Proof. A proof is similar to that of Lemma 11.1. O

Remark 11.2. Lemma 11.4 is seemingly the same as Lemma 11.1. However, the
subspace identification algorithm derived from Lemma 11.4 is different from the
one derived from Lemma 11.1. For it is clear that the way of computing state space
realizations is quite different in two methods. O

Since the transfer matrices P(z) and C(z) obtained from the realization of the
deterministic component of (11.25) are of higher order, we apply a model reduction
technique to get lower order models. This will be discussed in detail in Section 11.5.

11.4.3 Subspace Identification Method

In this section, we present a subspace identification method based on finite data. The
notation used here is the same as that of Subsection 11.3.2. Suppose that finite input-
output data ry (t), r2(¢), u(t), y(¢t) fort =0,1,---, N + 2k — 2 are given with N
sufficiently large and £ > n. We assume that they are samples from jointly stationary
processes with means zero and finite covariance matrices.

Let Roji—1, Rypar—1 € R¥*N be the block Hankel matrices generated by the
past and the future exogenous inputs, and similarly for Wo 1, Wjox_1 € RF*N,
Moreover, we define the block Hankel matrices

Rojx—1 }

,_ Wolk—1
Rojak—1 = [Rk|2k—1 !

Wojzk—1 = |:Wk|2k—1

and then the subspaces Rgjzx—1 and W2, generated by Rojz,—1 and Wojog_1,
respectively.

The first step of subspace identification is to obtain the deterministic component
wq by means of the orthogonal projection
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W61|2k—1 =E {Wo\zk—1 | R0|2k71} (11.28)

The following development is based on the argument of Section 9.7.
To derive the matrix input-output equation satisfied by ng\z e from (11.25), we

C 0 0
— nXxd i 1 dXn R dxd
define B := [B; B»] € R**¢, C = {CJGR ,D = |:D21D22:|€R

and the extended observability matrix
C
CA
Ok — ] € dexn’ k>n
CA'k—l
and the lower triangular block Toeplitz matrix
D
CB D O
W, = CAB CB D c RFdxkd (11.29)
CA*2B CA*3B..- CB D
Then, it follows from (11.25) that
Wilak—1 = Ok X{ + Ur Ryjors (11.30)

where
X,f = [za(k) za(k+1) - za(k+ N -1)]€ RN

By using Lemma 9.8, the matrix W,j’l%_l, a part of W(ﬂ%_l defined by (11.28),
satisfies the same equation as (11.30), i.e.,

VAVI?|2I¢—1 = 0L X{ + W Ry (11.31)

[see (9.44)], where the state vector is given by X := E{X{ | Rojar_1}-
Motivated by the above discussion, we consider the following LQ decomposition

Ryjar—1 Ly 0 0 0 Qi
Rojk—1 Ly1 Lys 0 O Q,

= 11.32
Wopr | | Lot Lax Lss 0 | | QF (1132
Wii2k—1 Lyy Lys Ly3 Lyy h

where L1, Las, L3z, Lyy € RF4X*4 are block lower triangular, and (); are orthogo-
nal. Then, from (11.28), the deterministic component can be given by

X X Ls; L 1
Wolak—1 = E{Wops-1 | Rojpr—1} = {Li Liz] [ng]
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Thus from the above equation and (11.31),
VAVI?|2I¢—1 =L QT + LxQF = L1, QT + O, X} (11.33)
By using the orthogonality Q7 Q> = 0, we see from (11.33) that
Lip = 05 X{Q
In the following algorithm, it is assumed that the LQ decomposition of (11.32) is

already given.

Closed-loop Identification — ORT Method
Step 1: Compute the SVD of Lyo, i.ce.,

L= [0 0] [*g g} {“;H ~ USVT (11.34)

where S is obtained by neglecting sufficiently small singular values. Thus the dimen-
sion of the state vector is the same as the dimension of S, so that we have

Ok XfQ2 = Ly = USVT = (Ugl/z) (31/2‘7T)

Under the assumption that X ,‘jQ2 has full rank, the extended observability matrix is
given by .
O =USY/?

Step 2: Compute the matrices A and C by
A=01_ 0k,  C=04(1:4d,)

where O, is obtained by deleting the first d rows from Q.

Step 3: Given the estimates of A and C, compute the least-squares estimates of
B and D from - -
U, (B,D) = U Ly L7}
where L1, and Ly, are obtained by (11.32), and U of (11.34) satisfies UT O = 0,
and with D11 = 0, D12 =0.
Step 4. Partition the obtained matrices B, C, D as

Ch 0 0
[ 1 2]: C |:CZ:| 3 |:D21 D22:|

and compute the state space realizations of P(z) and C(z) from (11.26) and (11.27),
respectively.

Step 5: Compute lower order models of P(z) and C(z) by using a model reduc-
tion method. This will be explained in the next section.



11.5 Model Reduction 315

11.5 Model Reduction

As mentioned already, all the identified transfer matrices have higher orders than the
true one. To recover reduced order models from Lemma 11.1 (or Lemma 11.4), it is
therefore necessary to delete nearly unreachable and/or unobservable modes. Since
the open-loop plant is possibly unstable, we need the model reduction technique that
can be applied to both stable and unstable transfer matrices [168, 186].

In this section, we employ a direct model reduction method introduced in Lemma
3.7. The technique starts with a given balanced realization, but higher order models in
question are not necessarily balanced nor minimal. Hence a desired model reduction
procedure should have the following property.

(a) Applicable to non-minimal and non-balanced realizations.

(b) Numerically reliable.

Let G(z) := (4, B, C, D) be a realization to be reduced, where we assume
that A € R™*" is stable. Let P and () be reachability and observability Gramians,
respectively, satisfying

P=APAY + BBY, Q=ATQA+C"C (11.35)

For the computation of Gramians for unstable A, see Lemma 3.9.
A similarity transform of the state vector by a matrix Z yields

Apr Ara B1-|
Azy Ay B2J (11.36)

[ZlAZ Z'B
Ci Cy D

cz 1)}:[

Define Z = [T T]and Z7! = {%] . Then, we have

. A11 A12 LB
- A21 A22 ’ _EB

so that we get Ay = LAT, By = LB and Cy, = CT.

The requirement (a) mentioned above is fulfilled by computing the matrices 7'
and L without actually forming the matrices Z and Z~!. Also, the requirement (b)
is attained by using the SVD-based computation. The following algorithm satisfies
these requirements.

SR Algorithm
Step 1: Obtain the Gramians P and @) by solving (11.35).

Step 2: Compute the factorizations

LAT LAT

LAT LAT
B,

— |8, [or cTi=(c oy
i

pP=251s, Q=R'R

Note that chol in MATLAB® does not work unless P and () are positive definite.
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Step 3: Compute the SVD of SRT € R"*™ as

T
SR —USVT = [U, U] [201 202} {“;;T] (11.37)

where ¥ = diag(oqy > -+ > 0, > 0,41 > <+ > 0, > 0), which are the Hankel
singular values of the system.

Step 4: Partition X' = diag{X;, X}, where
Y, = diag(oy, -+, or), Yy =diag(ory1, -+, On)
and define the matrices T" and L as
T=S"U,x'?  L=x V'R (11.38)
Then, a reduced order model is obtained by
G.(z) = (LAT, LB, CT, D) (11.39)
Using Lemma 3.7, we can prove that G.(z) is a reduced order model.

Lemma 11.5. A reduced order model is given by G,.(z) of (11.39). In general, G .(z)
is not balanced, but if we take the parameter r so that Xy > 0, Xy = 0, then G,.(z)
is balanced and minimal.

Proof. By the definition of Hankel singular values,
VA(PQ) = \/A(STSRTR) = \[\(RSTSRT)
= \Jou(SR)? = 0,(SRY)

This shows that the diagonal elements of X' obtained in Step 3 of SR algorithm are the

Hankel singular values. Pre-multiplying the first equation of (11.35) by X~ */2VTR
and post-multiplying by RTV X ~1/2 yield

DPYTRPRYV X2 = 712V TR(APATY)RTYV x—1/2
+ X 2VTR(BBT)RTV X1/
=L +15 (11.40)
From P = STS and (11.37), the left-hand side of (11.40) becomes
ZPYTRSTSRTV 2 = x 1 2yty RutUSVIVE T2 = £ (114])

To compute the right-hand side of (11.40), we note that
s 20 Vil L [L
VI R = I (11.42)

E—l/ZvTR — s
0o
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By using the fact that UUT = I,,, we get
P=SYux\2yy-12yts
oA 20
0 Z;l/Q 0 22

)

= ST, U]

y oo
Uy

0 251/2

_ T _ _
_ [T T] [201 202} {%} — TS, T" + T5,T" (11.43)

where T is defined by (11.38) and T := STU, X, '/%. Hence, from (11.40), (11.42)
and (11.43),

I = [ﬂ AT TY + TETHAY LY LT

I = [ﬂ BBT[LT LT
Thus from (11.41), the (1, 1)-block of (11.40) is given by
¥ = (LAT) X, (LAT)T + (LB)(LB)" + (LAT)X5(LAT)T
= A DAL + BIBY + A 5, AL (11.44)
Similarly, from the second equation of (11.35), we have
I = A, D1 A + CF 1 + Ay D5 Ay (11.45)

Equations (11.44) and (11.45) derived above are the same as (3.41a) and (3.43),
respectively. Thus G.(z) is a reduced order model of G(z), but is not balanced.
Putting Y5 = 0in (11.44) and (11.45) gives

2= A1121A1r1 + BlB1T; 2= A?121A11 + CFCH

implying that G (z) is balanced.
The minimality of G,.(z) is proved similarly to Lemma 3.7. O

In the SR algorithm derived above, it is assumed that A is stable. For the case
where A is unstable, defining the Gramians P and () as in Definition 3.10, it is
possible to compute them by the algorithm of Lemma 3.9. Hence, there needs to be
no change in the SR algorithm except for Step 1.

11.6 Numerical Results

Some numerical results for closed-loop system identification are presented. The first
model is a closed-loop system with a 2nd-order plant and a 1st-order controller, for



318 11 Identification of Closed-loop System

14
A\
2 H(z)
+ +,0
e o) a0 UePi) SO A

Figure 11.3. A feedback control system

which results obtained by the ORT and CCA methods are compared. In the second
example, we present identification results for a Sth-order plant with a 4th-order con-
troller by means of the ORT method. A feedback control system used in the present
simulation is displayed in Figure 11.3.

11.6.1 Example 1
Suppose that the transfer functions of plant and controller are given by

-1 _
z C(z) = z—10.8

P =
(2= | 1621108052 2

where the closed-loop poles are located at z = 0, 0.3, 0.3. We assume that the noise
v is an ARMA process generated by

H(z) = 1—1.56z71+1.045272 — 0.33382 73
© 1-2.352"142.09272 — 0.66752 3

This model is a slightly modified version of the one used in [160], in which only
the probing input 73 is used to identify the plant, but here we include r; and 72 as
reference inputs in order to identify both the plant and controller. The reference input
r1 is a composite sinusoid of the form

30
rl(t):pZAjsin(wjt+¢j), t=0,1,---, N+2k—-2

=1

where a magnitude p is adjusted so that 0? = 1, and 4; is a white noise with N(0, 1).
The parameters w; and ¢; are uniformly distributed over (0, 7), so that 7 has PE
condition of order 60. The 75 and v are Gaussian white noises with variances o3 =
(0.2)% and 62 = 1/9, respectively.

For the ORT method, since the sum of the orders of plant and controller is three,
3rd-order state-space models are fitted to the input-output data (7, w). Then, the 3rd-
order plant and controller models so identified are reduced to the second- and the
first-order models, respectively.

On the other hand, for the CCA method, 6th-order models are fitted to (r, w),
because the sum of orders of the plant, controller and noise model is six, and because
the state space model cannot be divided into separate deterministic and stochastic
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Figure 11.4. Estimates of poles, (+): plant, (x): controller
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Figure 11.5. Bode plots of P(z)

components. Thus, in this case, the identified 6th-order models of plant and controller
are reduced to the second- and the first-order models, respectively.

Case 1: We take the number of data points N = 2000 and the number of block
rows k = 15, and generated 30 data sets, each with different samples for r1, 7o and v.
Figures 11.4(a) and 11.4(b) respectively display the poles of the plant and controller
identified by the ORT and CCA methods, where + and x denote the true poles of
plant and controller, respectively. Figures 11.5(a) and 11.5(b) respectively display
the Bode plots of the estimated plant, and Figures 11.6(a) and 11.6(b) the Bode plots
of the estimated controller. We see from these figures that the identification results
by the ORT method are quite good, but the results by the CCA method are somewhat
degraded compared with the results by the ORT method.

The Bode plots of the plant identified by the ORT and CCA methods based on
the direct approach are shown in Figures 11.7(a) and 11.7(b), respectively. We clearly
see biases in the estimates of Bode magnitude, where the ORT provides somewhat
larger biases than the CCA method.
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Figure 11.6. Bode plots of C(z)
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Figure 11.7. Identification results by direct method

Case 2: As the second experiment, we consider the effect of the number of
data on the performance of identification. For the plant parameter vector 6 :=

(—1.6 0.89 1 0) € R*, the performance is measured by the norm of the estimation
error

1 M
— i(; 2
In = 5y X2 1686, M|

where é(z, N) € R? denotes the estimate of 6 at ith run, and where the number of
data is N = 200, 500, 1000, 2000, 5000, and the number of runs is M = 30 in each
case. Figure 11.8 compares the performance of the identification of plant transfer
function by the ORT and CCA methods. This figure clearly shows the advantage of
ORT-based algorithm over the CCA-based algorithm.

As mentioned before, if the exogenous inputs 71, ro are white noise, then the
two algorithm present quite similar identification results. However, if at least one
of the exogenous inputs is colored, then we can safely say that the ORT method
outperforms the CCA method in the performance.
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Figure 11.8. Comparison of identification results: the ORT (o - - - o) and CCA (X - - - X)
methods

11.6.2 Example 2

We assume that the plant is a discrete-time model of laboratory plant setup of two
circular plates rotated by an electrical servo-motor with flexible shafts [169], where
the transfer function of the plant P(z) is given by

() = 1073 (0.982* 4 12.9902° + 18.5892% + 3.29872 — 0.02)
7T 25 — 4398621 + 8.08522 — 7.82332 + 3.99542 — 0.8588

and where a stabilizing controller is chosen as

C(z) = 0.6300z* — 2.08302° + 2.82222% — 1.86502 + 0.4978
B z4 —2.650023 4 3.110022 — 1.7500z + 0.3900

The configuration of the plant and controller is the same as the one depicted in Figure
11.3, where the output noise process v = v is a Gaussian white noise sequence with
E {u2 (t)} = 1/9. Both the reference signals ry and r5 are Gaussian white noises
with variances o2 = 1 and 03 = 0.5, respectively. Note that P(z) has polesat z = 1,
0.9674 £ 0.14935, 0.7319 £ 0.6005; thus the plant has one integrator and therefore
is marginally stable. Also, the controller C'(z) has the poles at z = 0.7169+0.66787,
0.6081 £ 0.1910y; thus the controller is stable. We take the number of data points
N = 4000 and the number of block rows k& = 15. We generated 30 data sets, each
with the same reference inputs r; and 72, but with a different noise sequence v.

In this experiment, we have employed the ORT method. Figure 11.9 shows the
estimated eigenvalues of the matrix Ay — Bas D1_21 C1- [see Lemma 11.4], where +
denotes the true poles of the plant, x those of the controller and * the estimated
eigenvalues. From Figure 11.9 we can see that the nine poles of plant and controller
are identified very well.

The estimated transfer function P(z) of 5Sth-order is displayed in Figure 11.10.
Figure 11.10(a) shows the estimated poles of the plant, where + denotes the true
poles and * denotes the estimated poles over 30 experiments. The Bode plot of the
estimated transfer function of the plant is depicted in Figure 11.10(b), where the
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Figure 11.10. Identification by ORT method

dashed line depicts the true transfer function of the plant and the solid line depicts the
average over 30 experiments. From these figures, we can see that the ORT method-
based algorithm performs very well in the identification of the plant. Since C(z) is
stable, there are no unstable pole-zero cancellations in the reduction of the estimated
plant; thus it seems that the model reduction is performed nicely.

Furthermore, the estimation results of the controller are depicted in Figures 11.11
and 11.12. As in the case of the plant estimation, the estimation of the controller
needs the model reduction by approximate pole-zero cancellations. It should be noted
that in order to estimate the controller having the same order as the true one, we need
to perform an unstable pole-zero cancellation at z = 1. Figure 11.11 depicts the
estimated controller as a 4th-order model, which is the same order as the true one,
where Figure 11.11(a) shows the pole estimation, where x denotes the true poles and
* denotes the estimated ones, and Figure 11.11(b) shows the Bode plots of the true
transfer function (dashed line) and the average transfer function over 30 experiments
(solid line). We can see from these figures that there are many incorrect poles around
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Figure 11.12. Identification of controller (5th-order model)

positive real axis including z = 1, and the Bode plot is biased in low frequency
range.

On the other hand, Figure 11.12 displays the estimated controller as a Sth-order
model, i.e., the estimated 9th-order models are reduced to 5th order. In this case,
though Figure 11.12(a) shows that there are many incorrect poles around real axis,
we can see from Figure 11.12(b) that the Bode gain of controller is estimated very
well by using a Sth-order transfer function.

11.7 Notes and References

e In this chapter, based on Katayama et al. [87,88], we have developed two closed-
loop subspace identification methods based on the ORT and CCA methods de-
rived in Chapters 9 and 10, in the framework of the joint input-output approach.
See also Katayama et al. [89], in which the role of input signal in closed-loop
identification is discussed in detail.
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e The importance and the basic approaches of closed-loop identification are re-
viewed in Section 11.1 [48,109,145]. In Section 11.2, the problem is formulated
and the fundamental idea of the joint input-output approach is explained. The
present problem is virtually the same as the one treated in [170].

e Section 11.3 is devoted to the realization of feedback system and the derivation of
subspace identification method based on the CCA method. Section 11.4 derives
a subspace identification method based on the ORT method, and shows that the
plant and controller can be identified by a realization of deterministic component
of the joint input-output process.

e Since the transfer matrices derived by the joint input-output approach are nec-
essarily of higher order than the true one, we have presented a model reduction
technique called the SR algorithm in Section 11.5.

e Section 11.6 shows the procedure of closed-loop identification methods through
some numerical results. The performance of closed-loop identification depends
on the basic open-loop identification techniques; numerical results show that per-
formance of the ORT based method is somewhat superior to that of CCA based
method. Some related numerical results are also found in [89].

e Under the assumption that the plant is stable, a simple closed-loop identification
method based on the orthogonal decomposition of the joint input-output process
is described in Appendix below.

11.8 Appendix: Identification of Stable Transfer Matrices

In this section, as Appendix to this chapter, we present a simple closed-loop identifi-
cation procedure by using the result of Lemma 11.3 under the assumption that all the
open-loop transfer matrices in Figure 11.2 are stable. In the following, Assumptions
1 and 2 stated in Section 11.2 are satisfied.

11.8.1 Identification of Deterministic Parts
From (11.21), we have two deterministic equations
ya(t) = P(2)ua(t) (11.46)
and
a(t) = ~C(2)jat) (11.47)
where
Ya(t) = ya(t) —r1(t),  a(t) = ua(t) —r2(t)

It should be noted that above relations are satisfied by deterministic components
(ud, ya) and (@g, §q), since the noise components are removed in these relations.
Thus Figure 11.13 displays two independent open-loop systems for the plant and
controller, so that we can use (11.46) and (11.47) to identify the open-loop plant
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Ud Yd Yd —Uqg
> P(z) > > C(z) >

Figure 11.13. Plant and controller in terms of deterministic components

P(z) and the controller C'(z) independently. The present idea is somewhat related to
the two-stage method [160] and the projection method [49].

Identification Algorithm of Plant and Controller

Step 1: By using LQ decomposition, we compute the deterministic components
of the joint input-output process (y4, uq) and then compute (§4, Uq)-

Step 2: We apply the ORT (or CCA) method to the input-output data (u4, y4) to
obtain

2p(t+1) = Apz,(t) + Bpug(t) (11.48a)
ya(t) = Cpap(t) (11.48b)

Then the plant transfer matrix is given by P(z) = (A,, By, Cp).

Step 3: We apply the ORT (or CCA) method to the input-output data (@4, §4) to
obtain

z(t+1) = Acxc(t) + Begalt) (11.49a)
—tq(t) = Cexa(t) + Dcga(t) (11.49b)

Then the controller transfer matrix is given by C'(z) = (A, Be, C¢, D.).

For numerical results based on the above technique, see Katayama et al. [92].

11.8.2 Identification of Noise Models

We have not discussed the identification of noise models in this chapter. But, they can
easily be identified, if both the plant and controller are open-loop stable. It should be
noted that the noise models are located outside the closed-loop, so that the identifi-
cation of noise models is actually an open-loop identification problem.

Under the assumption that P(z) and C(z) are stable, we compute

Js(t) := ys(t) — P(2)us(t) = H(z)v(t) (11.50)
and
s(t) := us(t) + C(2)ys(t) = F(2)n(?) (11.51)

Figure 11.14 shows the block diagrams for noise models.

Since (us, §s) are second-order jointly stationary processes, we can identify
noise models H (z) and F'(z) by applying the CCA method (or a stochastic subspace
identification technique).
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Figure 11.14. Noise models in terms of stochastic components

In the following, we assume that the plant and controller in Figure 11.13 are
already identified by the procedure stated above.

Identification Algorithm of Noise Models
Step 1: By using (11.50) and (11.51), we compute g and 5.

Step 2: Applying the CCA method developed in Chapter 8 to the data y,, we
identify

ﬂih(t + 1) = Ahﬂih(t) + Kheh(t) (11.52a)
Us(t) = Cran(t) + en(t) (11.52b)

Then, the plant noise model is given by H(z) = (Ax, Ch, Kp, I,).

Step 3: Applying the CCA method developed in Chapter 8 to the data u,, we
identify

iEf(t‘Fl):AfiEf(t)—f‘KfEf(t) (1153&)
Us(t) = Cray(t) +ef(t) (11.53b)

Then, the controller noise model is given by F'(z) = (Ay, Cy, Ky, L,,).
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A
Least-Squares Method

We briefly review the least-squares method for a linear regression model, together
with its relation to the LQ decomposition.

A.1 Linear Regressions

Suppose that there exists a linear relation between the output variable y(t) and the
d-dimensional regression vector p(t) = [p1(t) @a(t) --+ @a(t)]T. We assume that
N observations {y(t), ¢(t), t =0, 1, --- , N — 1} are given. Then, it follows that

y(t) = <P1(t)91 + - +<Pd(t)9d + e(t), t= 01 11 Ty N-1 (Al)

where e(t) denotes the measurement noise, or the variation in y(t) that cannot be
explained by means of ¢ (t), ---, pa(t). We also assume that p;(t), - - , wa(t)
have no uncertainties!.

For simplicity, we define the stacked vectors

02 y(1) e(1)
0= . s Y= . ’ €= -
Bq y(N -1) e(N —1)
and the matrix
©1(0) ©2(0) ©a(0) ¢ (0)
. ei(1)  ea(1) pa(l) | _ ' (1)
PN -1 N -1) - pu(N-1)]  |[oT(N=1)

where & € RV*¢. Then (A.1) can be written as

'If ¢ are also subject to noises, (A.1) is called an errors-in-variables model.
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y=®0+e

This is referred to as a linear regression model. The regression analysis involves the
estimation of unknown parameters and the analysis of residuals.
The basic assumptions needed for the least-squares method are listed below.

A1) The error vector e is uncorrelated with @ and 6.
A2) The error vector is a random vector with mean zero.
A3) The covariance matrix of the error vector is 021y with 02 > 0.

A4) The column vectors of ¢ are linearly independent, i.e., rank(®) = d.

Under the above assumptions, we consider the least-squares problem minimizing
the quadratic performance index

N-1

J(0) == Y ly(t) — " (6] = |ly — 26]°

t=0

Setting the gradient of J(6) with respect to 6 to zero yields

N-1 N—-1
(Z so(t)so%)) =" oyt = (@ ®I=0"y (A2

t=0 t=0

This is a well-known normal equation.
From Assumption A4), we see that 7@ € RY*? is nonsingular. Thus, solving
(A.2), the least-squares estimate is given by

N—-1 -1 N1
Ous = (Z sa(t)so%)) doelyt)=(2Te) Ty (A3)

t=0 t=0
Also, from Assumptions Al) and A2),
E{0is} = E{(®T®)"'¢T (80 + ¢)}
=0+ (9"P) ' E{e} =0 (A.4)

so that the least-squares estimate 6y is unbiased. It follows from Assumption A3)
that the error covariance matrix of the estimate 6} g is

cov{fis} = E{[0 — Os][0 — Ois]"} = 0% (@ @) !
Moreover, define the residual vectoras e := y — @éLS. Then, it follows that
e=[Iy— (@ ®) 'y = [In — (" ®) " P e (A.5)

It should be noted that IT := ¢($*P) P71 satisfies 1> = IT and IT = II*, so
that IT is an orthogonal projection onto Im(®). Also, () := Ix — II is an orthogonal
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projection onto the orthogonal complement (Im @)+ = Ker(®7T). Then, ||¢|> =
yT (In — II)y denotes the square of the minimum distance between the point y and
the space Im(&7).
We compute the variance of the residual. From (A.5),
E{|le|*} = traceE{ee"}
= trace ([Iy — ®(®" @) " |E{ec Iy — B(P"S)" o7
= o’trace[ly — $(1 ) 1]
= o?[trace(Iy) — trace(®(®T8)'dT)] = ¢*(N — d)
Hence, the unbiased estimate of the variance o is given by

1 = 1
2. 2 _ 2
=g 2 0=yl

t=

In practice, the above assumptions Al) ~ A4) are not completely satisfied. If
either A1) or A2) is not satisfied, then a bias arises in the least-squares estimate. In
fact, in the computation of (A.4), we have

E{fis} =0+ E{(®"®) "¢} £ 6

Suppose that E{eeT} = R > 0, so that A3) does not hold. In this case, we
consider a weighted least-squares problem of minimizing

J(0) = |ly — PO||%-+ = (y — 26) R~ (y — 99)

By using the same technique of deriving the least-squares estimate éLs, we can show
that the optimal estimate is given by

fgLs := (PTR'®)'¢T Ry

where 61 is called the generalized least-squares estimate. The corresponding error
covariance matrix becomes

COV{éGLs} = (@T R! @) -1

We now turn to Assumption A4). In real problems, we often encounter the case
where there exist some “approximate” linear relations among regression vectors (col-
umn vectors of @); this is called a multicolinearity problem in econometrics. In this
case, one or more eigenvalues of T get closer to zero, so that the condition num-
ber k(®) becomes very large, leading to unreliable least-squares estimates. An SVD-
based method of solving a least-squares problem under ill-conditioning is introduced
in Section 2.7. There are also other methods to solve ill-conditioned least-squares
problems, including regularization methods, the ridge regression, efc.
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Example A.1. Consider the normal equation of (A.2):
(PTP) = o7y, $ e RV*4, yeRN (A.6)

We show that (A.6) has always a solution for any y € R . It is well known that
(A.6) is solvable if and only if the vector #1y belongs to Im($* &). However, this is
easily verified by noting that #*y € Im(®') = Im(¢* ).

By direct manipulation, we can show that § = &'y is a solution of the normal
equation, where @1 is the pseudo-inverse defined in Lemma 2.10. Indeed, we have

(@T0)dTy = 3T oty = T (TP Ty = 3T (d7) 19Ty = 3Ty

where the Moore-Penrose condition (iii) is used (see Problem 2.9). Also, the general
solution
=0y + Iy -z, VzeR?

satisfies the normal equation. O
Let @ be the set of minimizers
© := {8 |ly — #6|| = min}

Then, we can show that

1. If @ is a minimizer, i.e. § € @, then ' (y — #0) = 0, and vice versa.
2. If rank(®) = d, then © = {A.s}, a singleton.
3. The set @ is convex.

4. The set @ has a unique minimum norm solution § = &fy.

We apply the regression analysis technique to an ARX model?, leading to a least-
squares identification method, which is one of the simplest methods for a realistic
identification problem.

Example A.2. Consider an ARX model
A(2)y(t) = B(z)u(t) + e(t) (A7)

where the unknown parameters are § := (a; --- a, by - - b,)T and the
noise variance o2. This is also called an equation error model, which is most easily
identified by using the least-squares method. It should be noted that the ARX model
of (A.7) is derived from (1.1) by setting H(z) = 1/A(z).

From (A.7), the prediction error is given by

e(t,6) = A(2,0)y(t) — B(z,0)u(t) = y(t) — "' ()8 (A8)
where ¢(t) is the regression vector defined by

2ARX = AutoRegressive with eXogenous input.
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ot) 1= [=y(t=1) -+ —y(t—m) ult = 1) - uft - m)]" € R
Also, the unknown parameter vector is given by
0:=(ar - anbi- byt
Thus, it follows from (1.3) and (A.8) that

1 N-1
o) = o 3l - " (06

This implies that the PEM as applied to ARX models reduces to the least-squares
method, so that the optimal estimate is given by

X | N -1 | N2
s (V) = (N > s@(t)soT(t)> o S OO R
t=0 =0

Suppose that the actual observations are expressed as
y(t) = " ()6 + vo(t) (A.10)

where vy is a noise, and 6 is the “true” parameter. Substituting the above equation
into (A.9) yields

fLs(N) = 6o + (

Suppose that

LS1) A}gnoo J{f Z o)t (t) = E{p(t)¢T (t)} = nonsingular

Ls2)  Jim > (ol = Ble(tuo()} =0

N—oco

hold?. Then we can show that
lim O.s(N) = 6,
N—oco
Thus the least-squares estimate is consistent. O

For convergence results based on laws of large numbers, see [109, 145]. If the
above condition LS2) is not satisfied, then the least-squares estimate becomes biased.
In order to obtain an unbiased estimate, we can employ a vector sequence correlated
with the regressor vector ((t) but uncorrelated with the external noise v (¢).

3The second condition is surely satisfied if vo is a filtered white noise and ¢(t) is a
bounded sequence [109].
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Example A.3. (IV estimate) Let ((t) € R? be a vector sequence. Pre-multiplying
(A.10) by ((t) and summing over [0, N — 1] yield

N-1 N-1
)y (1) ( Z ((t) ) b0 + Z ((t)vo(t)
t=0 t=0
Suppose that a vector {(¢) satisfies two conditions
N-1
IVl)  lim Z ¢(¢) = FB{¢(t)" (t)} = nonsingular

N—oo N

N— oo

N-1
V2 Jim 3" CDuolt) = B{C()} = 0
t=0

Then, we obtain a consistent estimate

_11N71
Orv (N ( Zc )) N 2 Sy (A.11)

t=0

This estimate is usually called an instrumental variable (IV) estimate, and the vectors
((t) satisfying the conditions IV1) and IV2) are called IV vectors. O

Detailed discussions on the IV estimate, including the best choice of the IV vector
and convergence results, are found in [109, 145].

A.2 LQ Decomposition

We consider the relation between the least-squares method and LQ decomposition,
which is a key technique in subspace identification methods.
Consider an FIR (finite impulse response) model

y(t) = giult —i) +e(t) (A.12)

where e is a white noise with mean zero and variance 0. The problem is to iden-
tify the impulse responses 6 := (gx_1 - g1 go)* based on the input-output data

{u(t), y(t), t=0, 1, ---, N + k — 2}. We define a data matrix
w(0)  u(l)--- uw(N-1)
w(l) w(2)--- u(N)
Uojr—1 ] _ : : : e RIEHDXN
Y _ . . .
h=tlk=t u(k — 1) u(k) - w(N +k — 2)

y(k—1) y(k) -+ y(N +k—2)
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where we assume that Uy, _; has full row rank, so that rank(U0|k,1) =k.
We temporarily assume that 02 = 0. Then from (A.12), we get

u(0)  w(l)--- uw(N -1)
u(l) w(2) -+ u(N)
[9k=1 gr—2 -+ go —1] : : : =0
u(k—1) u(k) -+ w(N+k—2)

)
y(k—1) y(k) -+ y(N+k—2)

or this can be simply written as
0" —1] { Uojs—1 } =0 (A.13)

As shown in Example 6.2, this problem can be solved by using the SVD of the data

matrix. In fact, let { Uo‘k’l ] = USVT. Since the last singular value is zero due
k—1]k—1
to (A.13), i.e. o1 = 0, the (k + 1)th left singular vector ug41 satisfies
Upii—
T olk—1 | _
Uj, =0
M| Yieo 1kt }

Thus, normalizing the vector w41 so that the last element becomes —1, we obtain
an estimate of the vector 6.

Now we assume that 0= > 0, where no 6 exists satisfying (A.13), so that we
must take a different route to estimate the vector §. The LQ decomposition of the

data matrix yields
Uojr—1 Li; O QT
= A.14
|:Yk1|k1 Ly Ly | | Q3 ( )

where L1 € R¥** Loy € R™™!, Loy € R™™*, and matrices Q1 € RV** Q) €
RN > are orthogonal. By the rank condition for Up|j,_1, we see that det(L11) # 0,
so that

2

Yicije-1 = LQf + LypQ5 = L21L1_11U0\k + Ly2Qy

Since QT Q2 = 0, two terms in the right-hand side of the above equation are uncor-
related. Define

(gr—1 ** gr—1 9o) := Loy L7

and
[e(k —1) e(k) --- e(N+k—2)] :=Ly»Q3

Then, fort=k—1,k, ---, N + k — 2, we have
y(t) = gou(t) + glu(t — 1) + -+ gk,1u(t —k+ 1) + e(t)

This is the same FIR model as (A.12), implying that 87 = Lo, L' € R'** is the
least-squares estimates of impulse response parameters.
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We show that the above result is also derived by solving the normal equation.
The identification problem for the FIR model (A.12) can be cast into a least-squares

problem
min J(f) = HYI;T—HI@—l - U(;r|k—19||2

Thus, from (A.3) and (A.14), the least-squares estimate is given by
0 = Uojk-1Ugjk—1) " Uopemr1 Vil s 51
= (LuLiy) ML Q1 (L:n Q1 + LoaQ3) "] = (Lot L))"

This is exactly the same as the least-squares estimate of 8 obtained above by using the
LQ decomposition. Thus we conclude that the least-squares problem can be solved
by using the LQ decomposition.
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Input Signals for System Identification

The selection of input signals has crucial effects on identification results. In this
section, several input signals used for system identification are described, including
step signals, sinusoids as well as random signals. One of the most important concepts
related to input signals is the persistently exciting (PE) condition.

Letu(t),t =0, 1, --- be a deterministic function. Then we define the mean and
auto-covariance function as

1 N-—1
pu = lim ; u(t) (B.1)
and for/ =0, £1, - - -,
1 N-—1
Auu(l) = lim ; [u(t +1) — pa][u(t) — 2] (B.2)

Example B.1. (a) A step function is defined by

t=0,1,---
U(t): Uo, - 3 by
0, t=-1,-2 -

In this case, we have A,,(l) =0forl =0,%1,---.
(b) Consider a sinusoid defined by

u(t) = asin(wt + ¢), t=0,1,--- (B.3)

where w > 0 denotes the angular frequency, and ¢ > 0 and 0 < ¢ < 7 are the
amplitude and phase, respectively. Let

N—

>_¢

N—
sin(wt + @), cos(wt + @)
=0 t=0

>_¢
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Since lim Sy =0and lim Cpx = 0hold, we have
N—oo N—oo

Ay (l) = lim Z a’sin(w(t + 1) + ¢) sin(wt + ¢)

N—oo N

a2
5 cos(wl), 1=0,+1,---

where the formula: sin asin 8 = [cos(a — ) — cos(a + 3)]/2 is used.
Also, consider a composite sinusoid

P
u(t) = Z a; sin(w;t + ¢;), t=0,1,--- (B.4)

Jj=1

where 0 < wy < --- < w, denote the angular frequencies, and {a; } and {¢; } denote
the amplitudes and phases, respectively. Then, it can be shown that

l\D

P
Z Jcoswj l=0,%1,---

Jj=1

(c) In system identification, a pseudo-random binary signal (PRBS) shown in
Figure B.1 is often employed as test inputs. The PRBS is a periodic sequence with
the maximum period N = 2P — 1 where p is an integer greater than three, and is
easily generated by p-stage shift registers. It is shown [145] that the mean and auto-
covariance of a PRBS taking values on +b are given by

Sl = ®.5)
e N t=1 - N .
b2(1— 1) [=0 (modN)
N2J” B
Ny () = B2 1 (B.6)
—N(1+N), [#0 (modN)
The auto-covariance function are shown in Figure B.2. O
b
-t
—b
- N >

Figure B.1. A PRBS with the maximum period N = 15
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b’ b’

b’ /N
v/ i
0 i N

Figure B.2. The auto-covariance sequence of PRBS

In order to explain the PE condition of input signals, we consider the same FIR
model as (A.12):

k—1
y(t) = Z giu(t — i) + e(t) (B.7)

where e is a zero mean white noise with variance 2. We deal with the identification
of the impulse responses # = (gx—_1 -+ g1 go)" of the FIR model based on input-

output data {u(t), y(¢), t =0, 1, ---, N —1}. For notational simplicity, we define
the stacked vectors
y(k —1) e(k—1)
YnN-1= y(k) ; eN—1 = e(.k) € ROV—k+1)x1
YN = 1) e(N - 1)
and the matrix
u(0) u(1) u(k—1)

Un_1 = € RNV —k+1)xk

W(N = K) u(N =k +1) - u(N —1)
Then, from (B.7), we have a linear regression model of the form
yn—1 =Un_10+en_1 (B.8)
The least-squares estimate of 6 for (B.8) is obtained by solving
min lyn—1 — Un-10||

Recall that Conditions A1) ~ A4) in Section A.1 are required for solving the
least-squares estimation problems. In particular, to get a unique solution, it is neces-
sary to assume that rank(Un_1) = k. This condition is equivalent to the fact that

w(0)  w(l) -+ u(N—k)
u(l) u(2) - u(N—-Fk+1)
rank : : : =k (B.9)

wlk = D u(k) -~ w(N —1)
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It may be noted that the data length is finite for this case.

Definition B.1. [165] A deterministic sequence u with length N is PE of order k if
(B.9) holds. If the input is a vector process u. € R™, then the rank condition (B.9) is

replaced by rank(Un_1) = km. O
For a zero mean stationary process u € R™, we define the covariance matrix by
_ 1
Aun(h) = i URON
A (1) Ayu(0) A (k=2
= . (B.10)
Apu(b = 1) Ayu(k—2) -+ Auu(0)

Then the PE condition for a stationary stochastic process is defined as follows.

Definition B.2. [109, 145] If A,.(k) of (B.10) is positive definite, then we say that
u has the PE condition of order k. O

The following example shows that when we deal with finite data, there always
exist some ambiguities regarding how we treat boundary data.

Example B.2. Consider the step function treated in Example B.1. It can be shown
that the step function is not PE since we have rank (Un_1) = 1.

However, in practice, step signals are often used for system identification. To
consider this problem, we express (B.7) as

y(0) = gou(0) + gru(—1) + - + gr—1u(—k + 1) + e(0)
y(1) = gou(1) + g1u(0) + - - - + gr—1u(—k + 2) + e(1)

y(k—1) = gou(k — 1) + gru(k — 2) + - - + gr—1u(0) + e(k — 1)
y(k) = gou(k) + gru(k —1) + -~ + gr—1u(1) + e(k)

Suppose that the system is at rest for ¢ < 0. Then we have u(t) = 0,t =
—1, =2, -+, —k + 1. Rearranging the above equations and assuming that e(t) = 0
fort =0,1,---, we get

[y(0) y(1) -~ y(IN —1)]
0 -+ 0 w0 - wN-Fk)

= [gk—1 - 9o

w(O) u(l) - u(k—1)--- (N —1)
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Thus if u(t) = 1, ¢t = 0, 1, - -, the wide rectangular matrix in the right-hand side
of the above equation has rank k. Hence, by using the least-squares method, we can
identify the impulse responses go, g1, - -+ , gx—1. However, in this case, it should
be understood that the estimate is obtained by using the additional information that
u(t)=0,t=-1,-2,---, =k +1. O

Example B.3. We consider the order of PE condition for simple signals based on
Definition B.2.

(a) Let q(t) be a zero mean white noise with variance ¢2. Then, for all k& > 0,
we see that A, (k) = 021} is positive definite. Thus the white noise satisfies the PE
condition of order infinity.

(b) Consider a sinusoid u(t) = Asin(Aot), 0 < A¢ < w. Then, the auto-
covariance function is given by A, (k) = (A?/2) cos(\ok), so that

- A? 1 cos)g
Auu(2) = 2 {cos X 1 ]

- 9 1  cosAg cos2)g
Ayu(3) = cosdg 1 cos)g

€os 2\g €Oos Ao 1

We see that rank[A,,,(2)] = 2, and rank[A,, (k)] = 2 for k = 3, 4, ---. Hence the
sinusoid has PE condition of order two. This is obvious because a sinusoid has two
independent parameters, a magnitude and a phase shift. O

Lemma B.1. The PE conditions for some familiar stochastic processes are provided.

(i) ARMA processes have the PE condition of order infinity.
(ii) The composite sinusoid of (B.4) satisfies the PE condition of order 2p.

Proof. [145] (i) Let u be a zero mean ARMA process with the spectral density
function @, (w). Define h = (h(0), h(1), ---, h(l —1))T, and

Consider a process defined by y = H(z)u. Then we easily see that y is a zero mean
second-order stationary process, so that the variance of y is given by

-1 2 -1
ot = B[S nutt =i | = 3 uuli = DHOIG) =1 A O

1,j=0

It follows from Lemma 4.4 that

™

BT A (D) = ;ﬂ/ (67 2oy (w) o B.11)

—T
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Suppose that u does not satisfy the PE condition of order /. Then there exists a
nonzero vector h € R' such that KT A, (I)h = 0. Since the integrand of (B.11) is
nonnegative, we have |H (e/“)|2®,,,(w) = 0 for all w!. However, from (4.35), the
spectral density function of the ARMA process is positive except for at most finite
points. It therefore follows that H(e’*) = 0 (a.e.), and hence h = 0. This is a
contradiction, implying that the ARMA process satisfies the PE condition of order (.
Since [ is arbitrary, the ARMA process satisfies the PE condition of infinite order.
(ii) Since, as shown in Example B.3, a sinusoid has the PE condition of order
two, the composite sinusoid of (B.4) has the PE condition of order 2p. O

From Lemma B.1 (i), we can say that for a stationary process u, if
Gy (w) >0, —T<w<T

is satisfied, then u is PE of order infinity. This condition has already been mentioned
in Chapters 9 and 10.

!The equality holds for w € (—m, ) almost everywhere (a.e.).
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Overlapping Parametrization

In this section, we derive an overlapping parametrization for a stationary process; see
also Example 1.2. From Theorems 4.3 and 4.4 (see Section 4.5), a zero mean regular
full rank process y € RP can uniquely be expressed as

y(t) = Hie(t—i) Z Hy_;eli (C.1)
=0 i=—00

where e is the innovation process with mean 0 and covariance matrix R > 0, and
where H;, i = 0, 1, - - - are impulse response matrices satisfying

YHP <003 Ho=1,

Define the transfer matrix by

Moreover, define
Y, =span{y(t —1), y(t-2), -}
&, =span{e(t —1),e(t—2), ---}
Then, it follows that Y, = &, ,¢t = 0, £1, ---. In the following, we assume that

both H(z) and H~1(2) are stable.
Let ¢ be the present time. Then, from (C.1),

t+k
y(t+k) = Zﬂwze ZHmze k=0,1,---  (C2

i=—00

Thus we see that the first term in the right-hand side of the above equation is a
linear combination of the future innovations e(t), - - - , e(t + k) and that the second
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term is a linear combination of the past innovations e(t — 1), e(t — 2), - - -. Since
Y, = &;, the second term is also expressed as a linear combination of the past
outputs y(t — 1), y(¢t — 2), - - -, and hence it belongs to Y; . Thus it follows that the
optimal predictor for y(¢ + k) based on the past Y; is given by (see Example 4.10)

t—1
Glt+k|t—1)= Y Hypie@d), k=01, (C.3)

i=—o0

Repeated use of this relation yields

gt t—1) Hy Hy H3 -~ e(t—1)
:lj(t+].|t—].) H2H3H4"' 6(t—2)

It should be noted that this is a free response of the system with the initial state
resulting from the past inputs e up to time ¢t — 1 (see also Section 6.2).
Let the block Hankel operator be

Hy, Hy Hs -

H, H; Hy ---
H=|\H,H, Hy -

where it is assumed that rank(H) = n < oc. As shown in Section 8.3, the predictor
space is defined by
X = B Yy =span{(t + k|6 - 1) [k=0,1,- )
Thus, we can find n independent vectors from the infinite components
{9:(t+k|t—-1), i=1,---,p, k=0,1,---} (C.5)

where the n independent vectors form a basis of the predictor space DC;F/ .
Suppose that §(¢ | ¢ — 1) has full rank, i.e. cov{g(¢ | t — 1)} > 0. Then,

gl(t|t_1)ag2(t|t_l)a7gp(t|t_1) (C6)

are linearly independent, and hence we see that the first p rows of H are linearly
independent.

Letn = (n1, - -+, n,) be a set of p positive integers such that ny +- - - +mn, = n.

We pick n elements including the p components of (C.6) from the infinite compo-
nents defined by (C.5). Let such vectors be given by
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(t|t—1) (t+1|t—1) --,gjl(t+n1—l|t—1)
(t|t—1) (t+1|t—1) --,gj2(t+n2—l|t—l)
Gt 1 =10, Gt 411 6= 1), - Gl + 7y — 1| 6= 1)

Note that, for example, if ny = 1, then only ¢, (¢ | t—1) is selected from the first row.
If these n vectors are linearly independent, we call n = (nq, - - -, n,) amulti-index;
see [54, 68, 109] for more details.

By using the above linearly independent components, we define a state vector of

the system by
( t]t-1)

g1(t +nq '—1 |t—1)
z(t) == : €ER" (C.7)
gp(t |t —1)

Gyt +mp =11 1=1)_
From (C.3), we get

gt +k|t)

Z Ht+k 26 Z Ht—‘,—k Ze +er()

1=—00 1=—00

gt +k|t—1)+ Hee(t), k=0,1,---

In terms of the components, this can be written as
gi(t+k|t):gi(t+k|t—1)+hike(t), k=01, - (C.8)

wherei = 1, ---, p,and hix = [hir(1) -+ hix(p)] € RY*P is the ith row of Hy.
Also, from (C.7), the state vector at £ + 1 is expressed as

git+1]¢) ]

@1(754-77,1 | t)
z(t+1) = eR”
gp(t+111)

Lgp(t +mp [ 1)

Thus from (C.8), we can verify that
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[ g1t +1]t—1) [ hi1 (1) --- hai(p) ]
Bttn [=1) | | B @) - i ()
z(t+1) = : + : : e(t) (C.9)
gp(t+1|t_1) hpl(l) hpl(p)
Gty [£=1) ] Lpn, (1) =+ Bipm, (D)

Note that the first term in the right-hand side of (C.9) belongs to the space C)C?_/ “.In
particular, we see that §;(t + n; | ¢t — 1),i = 1,--- , p are expressed in terms of a
linear combination of the components of the basis vector x(t). Thus, we have

P

Gilt+ni | t=1) =YY akgit+k—-1[t—1), i=1,---,p (C10)
j=1 k=1

Other components g;(t +1 | t —1),l =1, --- , n; — 1 are already contained in the

vector z(t) as its elements, so that they are expressed in terms of shift operations.
Moreover, putting k£ = 0 in (C.8) and noting that §(¢ | t) = y(¢) and Hy = I,, yield

yi(t) = it |t — 1) +ei(t), i=1,---,p (C.11)

where g;(t | t — 1) belongs to T)Cj/_.

For simplicity, we consider a 3-dimensional process y with 9-dimensional state
vector, and assume that ny = 3,no = 4,n3 = 2 with n; + ns + ng = 9. Then, by
using (C.8) and (C.11), we have the following A- and C-matrix:

ro 1 0 0 0 0 0 0 07
O 01 0 0 O O O0 O
ah a%1 a% ab aﬁ a% a%z a%3 a%3
O 0 0 01 0 0 0 O
A= O 0 0o 0 0 1 0 0 O
O 0 0o 0 0 0o 1 0 o0
04%1 051 031 04%2 04%2 0432 a%z 053 053
O 0 0o 0 0 0 0 0 1
_0%1 03,1 agl 0‘%2 0‘%2 0432 a§2 a§3 a§3_

(p=3n=9,n1 =3,n0=4,n3 =2)
and
000
000
000
We can easily infer the forms of A- and C-
have the following state space equation

matrix for general cases. Thus, we
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z(t+1) = Az(t) + Ke(t) (C.12a)
y(t) = Cz(t) + e(t) (C.12b)

where K € R™*? is the coefficient matrix for e(t) of (C.9). We see that the number
of unknown parameters in this Markov model is 2np, since K has no particular
structure.

From the property of block Hankel matrix, we have the following lemma.

Lemma C.1. [54, 109] Any n-dimensional stochastic LTI state space system can
be expressed by means of a state space model (C.12) with a particular multi-index
n. In other words, the state space model (C.12) with a particular multi-index n can
describe almost all n-dimensional stochastic LTI systems. O

More precisely, let M, (p) be the model structure of (C.12) with a multi-index 7.
Also, let the sum of M,,(p) over possible multi-indices be

M(p) = JIm M,(p)

Then, the set M(p) denotes the set of all n-dimensional linear stochastic system with
p outputs. Of course, M,,(p) may overlap, but M(p) contains all the n-dimensional
linear systems M., (p).

The state space model of (C.12) is called an overlapping parametrization with
2np independent parameters. Thus, we can employ the PEM to identify the 2np
unknown parameters, but we need some complicated algorithms for switching from
a particular 2! to another 72 during the parameter identification, since we do not
know the multi-index 7 prior to identification.

In general, a p-dimensional process y with state dimension n is called generic if
the state vector z is formed as in (C.7) using some multi-index 7 = (ng,--- ,np).
The next example shows that there exist non-generic processes.

Example C.1. [54] Letp = 2 and n = 3, and consider the following matrices:

a B0 00
0:[(1)[1)8}, A=]001|, K=1|10
010 01

where a3 # 0. Then, since H; = CA7™'K, j =1,---, we get

Hl = [?8]: H2 = |:§(1):| ) H3 = :alﬂg]a H4 = |:a2ﬂ0+ﬁalﬂ:| s T

Thus the first 3 x 2 block submatrix of H is given by

00 B 0

1 0 0 1

By H, BO af 8

Hyoi= | H2 Hy | = g
Hs Hil | up g a6+ Bap

1 0 0 1
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It is easy to see that the first two rows of the block Hankel matrix are linearly inde-
pendent, but the 3rd row is linearly dependent on the first two rows. Thus we observe
that the selection 7 = (2,1) (n; = 2,m2 = 1) does not yield a basis. Actually, in
this case, we should pick the first two rows and the fourth row to form a basis. O
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List of Programs

In Appendix D, some of MATLAB® programs used in this book are included.

D.1 Deterministic Realization Algorithm

Table D.1 displays a program for the Ho-Kalman’s algorithm of Lemma 6.1, where
it is assumed that k, | > n := rank(H).

Table D.1. Ho-Kalman’s algorithm

% Function zeiger.m

% Lemma 6.1

function[A,B,C] = zeiger(H,p,m,n)

% p = dim(y); m = dim(u); n = dim(x)

% (p, m) are known

% kp x Im Hankel matrix

% k, | > n; H must be finite rank

kp = size(H,1); Im = size(H’,1);

[U,S,V] = svd(H); % Eq. (6.14)
n=rank(S); % if n is known, this is redundant.
S1 =sqgrtm(S(1:n,1:n));

% T = identity matrix % Eq. (6.15)
Ok = U(:,1:n)*ST;

Cl = S1*V(;,1:n);

A = Ok(1:kp-p,:)\Ok(p+1:kp,:); % Eq. (6.16)
B = CI(:,1:m);

C = Ok(1:p,2);
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D List of Programs

Table D.2. MOESP method

% Function moeps.m
% Lemma 6.6

% m = dim(u), p=dim(y), n=dim(x); k=number of block rows

% U = km x N input data matrix
% Y = Kkp x N output data matrix
function [A,B,C,D] = moesp(U,Y,m,p,n,k)
km = size(U,1); kp = size(Y,1);
L = triu(ar([U;YT))’; % LQ decomposition
L11 =L(1:km,1:km);
L21 = L(km+1:km+kp,1:km);
L22 = L(km+1:km+kp,km+1:km+kp);
[UU,SS,VV] = svd(L22);
U1 = UU(;,1:n); % n is known
Ok = U1*sqrtm(SS(1:n,1:n));
% Matrices A and C
C = Ok(1:p,1:n);
A = pinv(Ok(1:p*(k-1),1:n))*Ok(p+1:p*k,1:n);
% Matrices B and D
U2 = UU(;,n+1:size(UU’,1));
Z =U2™L21/L11;
XX=[;RR=1];
forj=1:k
XX = [XX; Z(:;,m*(j-1)+1:m*))];
Okj = Ok(1:p*(k-)),3);
Rj = [zeros(p*(j-1),p) zeros(p*(j-1),n);
eye(p) zeros(p,n); zeros(p*(k-j),p) OKil;
RR = [RR; U2*Rj];
end
DB = pinv(RR)*XX;
D =DB(1:p,:);
B = DB(p+1:size(DB,1),:);

D.2 MOESP Algorithm

Table D.2 displays a program for the basic MOESP method developed in [172,173].
A formation of data matrices is omitted in this program, but Table D.3 contains a

related method of constructing data matrices.

observability matrix Im(Oy).

% Eq. (6.39)

% Eq. (6.41)
% Eq. (6.42)

% Eq. (6.44)

It should be noted that way of computing matrices A and C' is different in each
method, but the computing method of B and D in the MOESP method in Table
D.2 is commonly used in many other subspace identification methods (not always).
Thus we can say that differences in algorithms of subspace system identification
methods are attributed to the way of computing A and C, or the image of extended
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D.3 Stochastic Realization Algorithms

We show two algorithms of stochastic realization based on Lemma 7.9 in Section 7.7
and Algorithm A in Section 8.7. It will be instructive to understand the difference
between the two stochastic realization algorithms.

Table D.3. Stochastic realization algorithm

% Function stochastic.m
% Lemma 7.9
% function [A,C,Cb,K,R] = stochastic(y,n,k)
%y =[y(1),y(2),...,y(Ndat)]; p x Ndat matrix
% n = dim(x); k= number of block rows
function [A,C,Cb,K,R] = stochastic(y,n,k)
[p,Ndat] = size(y); N = Ndat-2*k;
i=0;
fori= 1:p:2*k*p-p+1

i = ii+1;

Y (i:i+p-1,:) = y(i,iizii+N-1);
end;
% Data matrix
Ypp = Y(1:k*p,:);
fori=1:k

j = (k-i)"p+1;

Yp(j:j+p-1,:) = Ypp((i-1)*p+1:i*p,:); % Yp := Y check
end
Yf=Y(k*p+1:2*k*p,:);
Rfp = (Yf*Yp’)/N; % Covariance matrix

[U,S,V] = svd(Rfp); % Eq. (7.81)
S2 = sgrtm(S(1:n,1:n));

Ok = U(:,1:n)*S2; % Eq. (7.82)
Ck = 82*V(;,1:n)’;

A = Ok(1:k*p-p,:)\ Ok(p+1:k*p,:); % Eq. (7.83)
C = Ok(1:p,2);

Cb = Ck(1:n,1:p);

RR = (Yf*Yf)/N;

RO = RR(1:p,1:p); % Variance of output

[PL,G,Rept] = dare(A’,C’,zeros(n,n),-R0,-Cb’); % ARE (7.84)
K=G

R = R-C*P*C’;

Table D.3 displays the stochastic realization algorithm of Lemma 7.9, in which
ARE is solved by using the function dare. This function dare can solve the ARE
appearing in stochastic realization as well as the one appearing in Kalman filtering.
For details, see the manual of the function dare.
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Table D.4. Balanced stochastic realization — Algorithm A

% Function stocha bal.m
% Algorithm A in Section 8.7
%y =[y(1),y(2),...,y(Ndat)]; p x Ndat matrix
% n = dim(x); k =number of block rows
function [A,C,Cb,K,R] = stocha bal (y,n,k)
[p.Ndat] = size(y); N = Ndat-2k;
ii=0;
fori=1:p:2*k*p-p+1
i =ii+1;  Y(iii+p-1,:) = y(;,ii:ii+N-1);
end
Yp = Y(1:k*p,:); Yf=Y(k*p+1:2*k™p,:);
% LQ decomposition
H =[Yp; Yf]; [Q,L] = qr(H’,0); L =L/sqrt(N); % Eq. (8.76)
L11 =L(1:k*p,1:k*p); L21 = L(k*p+1:2"k™p,1:K*p);
L22 = L(k*p+1:2*k*p,k*p+1:2*k*p);
% Covariance matrices
Rff = (L21*L21’+L22*L22");
Rfp = L21*L11’; Rpp = L11*L11’;
% Square roots & inverses
[Uf,Sf,Vf] = svd(Rff); [Up,Sp,Vp] = svd(Rpp);
Sf = sqrtm(Sf); Sp = sqrtm(Sp);
L = Uf*Sf*Vf’; M = Up*Sp*Vp’; % Eq. (8.77)
Sfi = inv(Sf); Spi = inv(Sp);
Linv = Vf*Sfi*Uf’; Minv = Vp*Spi*Up’;
OC = Linv*Rfp*Minv’;

[UU,SS,VV] = svd(OC); % Eq. (8.78)
Lambda = Rpp(1:p,1:p); % Covariance matrix of output

S =S8S(1:n,1:n);

Ok = L*UU(:,1:n)*sgrtm(S); % Eq. (8.79)
Ck = sgrtm(S)*VV(:;,1:n)*M’;

A = Ok(1:k*p-p,:)\Ok(p+1:k*p,:); % Eq. (8.80)
C =0k(1:p,:); Cb =Ck(:,(k-1)*p+1:k*p)’;

R = Lambda-C*S*C’; K= (Cb’-A*S*C’)/R; % Eq. (8.81)

Table D.4 shows a program for Algorithm A of Section 8.7. The form of data
matrix Y, in Table D.4 is slightly different from Y, in Table D.3, since in Table
D.3, after generating Y),, we formed )V/p by re-ordering the elements. Thus a way of
computing C'T in Table D.4 is different from that in Table D.3. There is no theoretical
difference, but numerical results may be slightly different.

The program of Table D.4 is very simple since the solution of ARE is not em-
ployed, but there are possibilities that A — BK is unstable. Also, it should be noted
that we compute L~! and M ~! by using pseudo-inverses. For, if the function chol is
used for computing the matrix square roots, the program stops unless X'y y and X,
are positive definite, but these matrices may be rank deficient.
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D.4 Subspace Identification Algorithms

The programs for the ORT and CCA methods derived in Sections 9.7 and 10.6 are
displayed in Tables D.5 and D.6, respectively. Also, a program of the PO-MOESP
is included in Table D.7. Comparing the programs in Tables D.5 and D.7, we can
easily understand the difference in algorithms of the ORT and PO-MOESP; both
use the same LQ decomposition, but the way of utilizing L factors is different. For
identifying B and D, the ORT uses the same method as the PO-MOESP.

Table D.5. Subspace identification of deterministic subsystem — ORT

% Function ort pk.m

% Subsection 9.7.1

function [A,B,C,D] = ort pk(U,Y,m,p,n,k);

% ORT method by Picci and Katayama

km = size(U,1)/2; kp = size(Y,1)/2;

% LQ decomposition % Eq. (9.48)
L = triu(ar([U;YT))’;

L11 =L(1:km,1:km);

L41 = L(2*km+kp+1:2*km+2*kp,1:km);

L42 = L(2*km+kp+1:2*km+2*kp,km+1:2*km);

% SVD % Eq. (9.52)
[UU,SS,VV] = svd(L42);

U1 = UU(:,1:n);

Ok = U1*sgrtm(SS(1:n,1:n));

C = Ok(1:p,1:n);

A = pinv(Ok(1:p*(k-1),1:n))*Ok(p+1:k*p,1:n); % Eqg. (9.53)
% Matrices B and D

U2 = UU(:;,n+1:size(UU’,1));

Z =U2*L41/L11; % Eq. (9.54)
% The program for computing B and D is the same

% as that of MOESP of Table D.2.

XX ={];

RR =];

forj=1:k

XX =[XX; Z(:,m*(j-1)+1:m*))];

Okj = Ok(1:p*(k-)),:);

Rj = [zeros(p*(j-1),p),zeros(p*(j-1),n);

eye(p), zeros(p,n);

zeros(p*(k-j),p),Okjl;

RR = [RR;U2*Rj];

end

DB = pinv(RR)*XX;

D =DB(1:p,:);

B = DB(p+1:size(DB,1),:);



354

D List of Programs

Table D.6. Stochastic subspace identification — CCA

% Function cca.m
% Section 10.6 CCA Algorithm B
%y =[y(1),y(2),...,y(Ndat)]; pxNdat matrix
% u = [u(1),u(2),...,u(Ndat)]; mxNdat matrix
% n = dim(x); k =number of block rows
% Written by H. Kawauchi; modified by T. Katayama
function [A,B,C,D,K] = cca(y,u,n,k)
[p,Ndat] = size(y); [m,Ndat] = size(u); N = Ndat-2*k;
ii=0;
fori=1:m:2*k*m-m+1
i =ii+1;  U(i:i+m-1,:) = u(:,ii:ii+N-1); % Data matrix

end
i=0;
fori=1:p:2*k*p-p+1
i = ii+1;
Y (i:i+p-1,:) = y(:,ii:ii+N-1); % Data matrix
end

Uf = U(k*m+1:2*k*m,:); Yf=Y(k*p+1:2*k*p,:);

Up = U(1:k"'m,2); Yp = Y(1:k*p,:); Wp = [Up; Yp];

H = [Uf; Up; Yp; Yi];

[Q,L] =qr(H,0); L=L; % LQ decomposition

L22 = L(k*m+1:k*(2*m+p),k*m+1:k*(2*m+p));

L32 = L(k*(2*m+p)+1:2*k*(m+p),k* m+1:K*(2*m+p));

L33 = L(k*(2*m+p)+1:2*k*(m+p),k*(2*m+p)+1:2*k*(m+p));
Rff = L32*L32'+L.33*L33"; Rpp = L22*L.22"; Rfp = L32*L.22";
[Uf,Sf,Vf] = svd(Rff); [Up,Sp,Vp] = svd(Rpp);

Sf = sqrtm(Sf); Sfi = inv(Sf); Sp = sqrtm(Sp); Spi = inv(Sp);
Lfi = Vf*Sfi*Uf’; Lpi = Vp*Spi*Up’; % Lf = Uf*Sf*Vf’; Lp = Up*Sp*Vp’
OC = Lfi*Rfp*Lpi’;

[UU,SS,VV] = svd(OC); % Normalized SVD
S1=S8S(1:n,1:n); U1 =UU(;,1:n); V1 =VV(,1:n);

X =sgrtm(S1)*V1*Lpi*Wp; XX = X(:;,2:N); X = X(:,1:N-1);
U = Uf(1:m,1:N-1); Y = Yf(1:p,1:N-1);

ABCD = [XX;Y][X;U]; % System matrices

A = ABCD(1:n,1:n); B = ABCD(1:n,n+1:n+m);

C = ABCD(n+1:n+p,1:n); D = ABCD(n+1:n+p,n+1:n+m);

W = XX-A*X-B*U; E = Y-C*X-D*U;

SigWE = [W;ET*[W;E]/(N-1);

QQ = SigWE(1:n,1:n); RR = SigWE(n+1:n+p,n+1:n+p);

SS = SigWE(1:n,n+1:n+p);

[P.L,G,Rept] = dare(A’,C’,QQ,RR,SS); % Kalman filter ARE
K =G’; % Kalman gain

The CCA method — Algorithm B — in Table D.6 is based on the use of estimates

of state vectors. It may be noted that the LQ decomposition in the above table is
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different from the one defined by (10.46); in fact, in the above program, the past

Up
Y,

p
matrices are the same.

The following table shows a program of the PO-MOESP algorithm [171].

input-output data { } is employed for Wo|k—1 , since the row spaces of both data

Table D.7. PO-MOESP algorithm

% Function po moesp.m

function [A,B,C,D] = po moesp(U,Y,m,p,n,k);

% cf. Remark 9.3

% m=dim(u), p=dim(y), n=dim(x)

% k=number of block rows; U=2km x N matrix; Y=2kp x N matrix
km=k*m;

kp=k*p;

% LQ decomposition

L = triu(ar([U;YT))’;

L11 = L(1:km,1:km);

L21 = L(km+1:2*km,1:km);

L22 = L(km+1:2*km,km+1:2*km);

L31 = L(2*km+1:2*km+kp,1:km);

L32 = L(2*km+1:2*km+kp,km+1:2*km);

L41 = L(2*km+kp+1:2*km+2*kp,1:km);

L42 = L(2*km+kp+1:2*km+2*kp,km+1:2*km);

L43 = L(2*km+kp+1:2*km+2*kp,2*km+1:2*km-+kp);
[UU,SS,VV]=svd([L42 L43]);

U1 =UU(:,1:n);
Ok = U1*sqrtm(SS(1:n,1:n));
C = Ok(1:p,1:n);

A = pinv(Ok(1:p*(k-1),1:n))*Ok(p+1:k*p,1:n);

% Matrices B and D

U2 = UU(:,n+1:size(UU’,1));

Z =U2*[L31 L32 L41})/[L21 L22 L11];

% The rest is the same as that of MOESP of Table D.2.
% The subsequent part is omitted.
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Solutions to Problems

Chapter 2

2.1 (a) Suppose that rank(A) = r. Let A = UXVT, where X = diag(¥,0),
and ¥, € R™*" > 0. Also, partition U = [U,. U,] and V' = [V;: V.]. From Lemma
2.9 (i), we see that Im(A) = Im(U,.), Ker(AT) = Im(U,), and Im(AT) = Im(V,.),

Ker(A) = Im(V;). Item (a) is proved by using

Im(U,) ® Im(U,) = R™, Im(U,) L Im(U,)

Im(V,.) & Im(V;.) = R", Im(V,.) L Im(V;.)

(b) These are the restatement of the relations in (a).
(c) We can prove the first relation of (c) as

Im(AAT) = Im(U, 22U} = Im(U,) = Im(A)
Also, the second relation is proved as follows:

Alm(B) ={Az |z =Bn,n € RP} = {ABn |n € R’} = Im(AB)

2.2 Compute the product of three matrices in the right-hand side.

2.3 (a) It suffices to compute the determinant of both sides of the relations in
Problem 2.2. (b) This is obvious from (a). (c) Pre-multiplying the right-hand side

of the formula by {é IB;} yields the identity. (d) Comparing the (1, 1)-blocks of

the formula in (c) gives
[A-BD'C]' = A"+ A™'B[D-CA™'B]7'CA™!

By changing the sign of D, we get the desired result.

2.4 Let Pz = Az, x # 0. Then, P(Pz) = P(Az) = A2z holds. Hence, from
P2 = P, we have Px = A\2z. It thus follows that A\x = A2z for  # 0, implying
that A = 0or A = 1. Suppose that \; = --- = A, =land A\py; =--- = A, = 0.
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We see that trace(P) = ., A\; = r. Let the SVD of P be givenby P = UXVT,
where ¥ = diag(o1,--- ,0,). Since, in this case, g; = \;, we see that rank(P) =
rank(X) = r.

2.5 Suppose that P? = P holds. Then, from Lemma 2.4 and Corollary 2.1, we
have (2.17) and (2.18). Thus (a) implies (b).

We show (b) — (c). As in the proof of Lemma 2.5, we define V = Im(P) and
W = Im(I,, — P). Note that for the dimensions of subspaces, we have

dim(V v W) = dim(V) 4+ dim(W) — dim(V Nn'W)

Since = Px + (I,, — P)xz, it follows that R* = VV W and n = dim(V vV 'W).
Also, from (b), we get dim (V) + dim(W) = n, and hence dim(V N'W) = 0. This
implies that V N'W = {0}, so that (c) holds.

Finally, we show (c) — (a). Post-multiplying I,, = P + (I, — P) by P yields
P = P? + (I, — P)P, so that we have P(I,, — P) = (I,, — P)P. Thus

Im P(I,, — P) C Im(P), Im (I, — P)P C Im(I,, — P)

hold. If (c) holds, we get Im(P) N Im(Z,, — P) = {0}, implying that Im[P(I,—P)] =
{0} follows. Hence, we have P? = P. This completes the proof.

2.6 Since LT = I,., we get P2=TLTL=TL = P. Also, T and L are of full
rank, so that Im(P) = Im(7T'L) = Im(T") and Ker(P) = Ker(T'L) = Ker(L). This
implies that P is the oblique projection on Im(7") along Ker(L). Similarly, we can
prove that () is a projection.

2.7 Define L = [L; Lp]and V = [V} V3]. Since {‘I;] [T U]l= {

Ly Ly||I, -X| |I. O
Vl sz 0 Infr B 0 Infr
This implies that Ly = I,., Lo = X, V; =0, Vo = I,,_,, and hence

[

I, 0
0 In_ |’
we have

0 0

28 (a) Let P = V,V,I. Then, P2 = P and PT = P hold, so that P is
an orthogonal projection. Also, from Lemma 2.9, we have Im(A") = Im(V,) =
Im(V,.V,1). Similarly, we can prove (b), (c), (d).

29 Let A = UXVT, where U € R™*™_ V € R"*™ are orthogonal and
Y= {ES 0] € Rm*™ with X5 € R™*" diagonal, where r := rank(A). Then, we

00
get
(AAD = vexTuH = uxxT)tuT
where )
Y720
Tyt s mxXm
(XX = [ 0 0] eR
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Thus

T —2 —1
AT(AAT)T:V[%g} {25 8] UT:VHS) 8] UT = At

That (ATA)T AT = At is proved similarly.

2.10 Let A = UXVT, where ¥ = diag(oy,-++,0,), and U € R™*", V €
R™ ", Then, we have @ = UV"' and IT = VXV . Note that VV?' = VTV = [,,.
Chapter 3

3.1 Since |gi| = 1/k, k=1, 2, ---, we have

(o)

=1
Z|gk|zzk=00
=1 k=1

k

This implies that the system is not stable.

3.2 To apply the Routh-Hurwitz test for a continuous-time LTI system to a
discrete-time LTI system, let z = (s + 1)/(s — 1). Then, we see that 2| < 1 <
NRe[s] < 0. From f((s+1)/(s — 1)) =0, we get

(14+a; +az)s* +2(1—as)s+ (1—a; +as) =0
Thus the stability condition for 22 4+ a1z + 2» is given by
1+a; +ax >0, 1—a; +as >0, 1—a>2>0 (E.1)

3.3 From a diagonal system of Figure 3.3, A and B are given by

A 00 by
A= 0 /\2 0 s B = b2
0 0 As b3

Thus, from Theorem 3.4 (ii), it suffices to find the condition such that
AM—2z O 0 b1
rank 0 )\2 -z 0 b2 = 3, z = )\1, )\2, /\3
0 0 )\3 —Z b3
holds. Hence, the reachability condition becomes
b1babs # 0, (A —=A2) (A2 = A3)(As — A1) #0
3.4 Note that € = [b Ab --- A" 1b]. From (2.3), we have
A" = —(alA"_1 +t a1 A+ anl)

Hence,
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AC =[Ab A%b .- A™Y]

=[Ab A%b -+ — (A" 4oy 1A+ a,D)b]
0 —ay,
1 —Qp_1 _
=[b Ab --- A”’lb] ) . =CA
1 —Q]
and
1
0 _
b=1[b Ab --- A"’lb] .|l =Cb
0

3.5 We can show that
rank[A+ BK — A Bl=n <& rank[A— Al B]l=n

and

C

The results follow from Theorems 3.4 ~ 3.9.

3.6 Define A := A/(p(A) + ¢). Then, the spectral radius of A is strictly less
than 1, and hence A* — 0as k — oo. Thus, in particular, the elements of the
sequence {A¥, k = 1,2,---} are bounded, so that we have |(A*);;| < C,C > 0
fork=1,2,--- andi,j = 1,--- ,n. Since (A¥);; = (4%):;/(p(4) + €)*, we get
the desired result.

K A+ LC -
an c

=n < rank {A_)‘I}

3.7 Before proving this assertion, it will be helpful to look at the proof of a basic
convergence result for the Césaro sum in Problem 4.3 (a).
The solution z(t) is given by

2(t) = A'z(0) + i AR E (k)
k=0

By assumption, p(A4) < 1. Thus we can take ¢ > 0 such that p(4) + & =:a < 1.
From Problem 3.6,

[(A5)5] < Clp(A) +e)F = ||AHo < Ciab, E=1,2,--

where Cy > 0, and || - || is a matrix norm (see Section 2.3). By using the above

estimate,
t—1

lz(®)] < Cra'llz(O)]| + C1 Y a I f (k)]

k=0



E Solutions to Problems 361

Since the first term tends to zero as t — oo, it suffices to show that the second
term tends to zero as t — co. Let the second term be g(t). Then, we get

o) = Cra™ S a8k, Bk = IR
k=0

By hypothesis, limj_,o, 5(k) = 0, so that for any ; > 0, there exists Ny > 0 such
that 5(k) < e1(1 — a)/(aCh) for all k > Ny. Thus, for a sufficiently large ¢,

[ No t—1
g(t) = Cra'™! Za_kﬂ(k) + Z a_kﬁ(k)]
Lk=0

k=No+1
[ No t—1
t—1 —k e(1-a) —k
< Cia Za B(k) + aCy Z a ]
Lk=0 k=Ny+1
[ No —No—1 —t+1
—1 k eif(l—a) fa 1 —a
= k
Cla ];)a ﬂ( ) + aCl < 1 - a_l >‘|
- No

< Cra! Z a~"B(k)
Lk=0

+ée1 [1 — at_N°_2]

The first term in the right-hand side of the above inequality tends to zero as ¢t — oo,
while the second term is smaller than €;. This completes the proof.

3.8 It can be shown that

[zI—A B]

3 I, 0][2I-4 B
-C D

‘[—cw—A)l IH 0 G

. I 0
_ —1 n _
where G(z) = C(zI — A)~! B. Since rank [ C(a1 )1 Ip] =n + p, we get

rank.S(z) = rank.(zI — A) + rank.G(z) = n + rank.G(z)

3.9 ([51], vol. 2, pp. 206-207) Suppose that R(z) = b(z)/a(z) is rational, and

that the series expansion
b(z h h:
(=) by RS (E.2)
a(z) z =z
converges for |z| > p for some p > 0. Suppose that polynomials a(z) and b(z) are
given by
a(z) =2+ arz™ o a, b(z) = brz™ 4 byz™ 2 4 by

Multiplying (E.2) by a(z) yields

h h
b12m1+b22m2++bm:(2m+a12m1++am)<; +Z; +>
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Equating the coefficients of equal powers of z on both sides, we obtain

by =M
b2 = h2 + a1h1

b = hm +athym 1+ +am 1l
andforj=m+1, ---,
0=hj+ahj-1 +- -+ anhj_m

This implies that (2.40) holds with » = m, so that the Hankel matrix (2.35) has finite
rank.

Conversely, if H has finite rank, then (2.40) holds from Lemma 2.14. Hence,
by using ay, - - -, a, of (2.40) and the above relations, we can define by, - - - , b.
Thus we see that b(z)/a(z) is a desired rational function, which equals R(z) =
h1/2+h2/22+"'.

3.10 Note that the following power series expansion:

1 1
1 1 e e —2 -3 _ ...
og(l+z )=z o7t 4% ,
Thus the right-hand side converges to a non-rational transfer function, implying that
the impulse response cannot be realized by a state space model.

|z| > 1

Chapter 4

4.1 Putting i — j = k, we change variables from (i, j) to (j, k). Then, k is
boundedby —N +1< k< N —1,andjisboundedbyl < j < N —-kifk >0
andby —k +1 < j < N if k < 0. Thus we get

N N N—-1N—k -1 N
N oli-= > sk)+ > D ¢k
i=1 j=1 k=0 j=1 k=—N+1 j=—k+1
N-—1 -1
=Y (N=kok)+ > (N+k)g(k)
k=0 k=—N+1
N—-1
= > (N—[kDg(k)

k=—N+1

4.2 Define k =t — s. Then, applying the formula in Problem 4.1, we have

N N 2N
SN Ait-s)= > @N+1—|k)A(k)
i=—N j=—N k=—2N

Thus dividing the above equation by 2V + 1 gives (4.13).
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4.3 (a) Lete > 0 be a small number. From the assumption, there exists an

integer p > 0 such that |ax| < € for k > p. Let M = max{|a1|, - - - , |ap|}. Then,
M - M
apt-tan| pMten—p) pM
n n n

Taking the limit n — oo, we have pM /n — 0. Since € > 0 is arbitrary, the assertion
is proved.

(b) Define B,, = (1/n) Zak with Bg = 0. Then, lim,_, |Bn| = 0 by
k=1
hypothesis. Noting that

kay = k*By — (k —1)*By_, — (k — 1)By,_,

we have

1 & k 1 — 1 &
In::n 1<1_n>ak:Bn_n2Zkak:ngg(k_l)Bk1

k=1

Thus

n

1
<>

k=1

k-1 1 —
By 4| < -
PR LS ST STEY
k=1
since limy_, o0 |Br| = 0.

(c) Define C,, = Z ag. By assumption, lim C,, = 0. It can be shown that
n—oo

k=n
Zak—z<l—z>ak§ Zak +i2kak
k=1 k=1 k=n+1 k=1
= |Cn+1| + 7ll Z kay,
k=1

Since the first term in the right-hand side of the above equation converges to zero, it
remains to prove the convergence of the second term. By the definition of C,,

n

1 < 13 1
. ;kak = 3 K(Ck = Cir) = | 3 (IKCi = (+ 1)Chsa] + Car)

k=1 k=1
Ci n+1 1 &
= — C, Cy
n +1+ n E k+1

n
k=1

We see that the first and second terms of the right-hand side of the above equation
converge to zero, and the third term also converges to zero by (a).
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4.4 For zero mean Gaussian random variables a, b, ¢, d, we have (see e.g. [145])
E{abcd} = E{ab}E{cd} + E{ac}E{bd} + E{ad}E{bc} (E.3)
By using (E.3), it follows from (4.17) that
Aee(k) = E{z(t +1+ Ek)z(t + k)z(t + Dx(t)} — HZ
= Ara(DAza (1) + Aaa (k) Ana (k) + Axa (1 + k) Aaa (I = F) — pog
= A3, (k) + Awa(l + k) Aea (I = k)
By the Schwartz inequality,

N N
D Aee(k)| <D A2, (k)
k=0

k=0

k=0
N N 1/2
gZAiw(k)Jr(Z A2 (k+1) ZA l) (E.4)
k=0 k

Since (4.20) holds, it follows that

N
D Aaa(b+ 1) Aga(k 1)

ngnooN ZA (k£1) 1=0,1,---

and hence from (E.4)
. 1
M g1 2 k) =0

This implies that (4.19) holds from Problem 4.3 (c).
4.5 Similarly to the calculation in Problem 4.2, we have

In(w) = 2N1+ . Z Z E{z()z(k)}e «h)

I=—N k=—N

2N |7_| )
— Z (1 ~ N4+ 1) A(r)e ™ (E.5)

T=—2N
Note that

i —JW"' —
i, Z_;NA 7()

exists. It therefore from Problem 4.3 (c) that the limit of the right-hand side of (E.5)
converges to @(w).

4.6 A proof is similar to that of Lemma 4.4. Post-multiplying
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y(t) = gru(t — k)
k=0
by u(t — ) and taking the expectation yield
Ayu() =D geB{u(t — kyu(t = 1)} = > g Adwu(l — k)
k=0 k=0

Post-multiplying the above equation by e~/ and summing up with respect to  yield

@yu(w) — Z nge—jwk/luu(l _ k)e—jw(l—k)

l=—o00 k=0

> gre R By (w) = G(e7) By (w)
k=0

4.7 Since &, (w) = 2 — 2cosw = 4sin*(w/2),

/7r log @, (w)dw = 2/7r log[4sin® (w/2)] dw
0

—T

=4rlog2 + 4/ log sin(w/2)dw
0

/2
:47r10g2+8/ logsinfdf =0 > —o0
0

where fOW/Q logsin8df = —(w/2)log2 (Euler) is used.

4.8 The form of &(w) implies that y is a one-dimensional ARMA process, so
that
y(t) +ay(t —1) =e(t) + ce(t — 1)

Thus from (4.35), the spectral density function of y becomes

B(w) = o 1+cej"" ? _ 2 1—|—c:2 + 2ccosw
1+ ael* 14 a%+ 2acosw
Comparing the coefficients, we have a = —0.9, ¢ = 0.5.
4.9 Since H(z) = (2 + ¢)/(z + a), we have
ZmH(z) — z (Z +C) — (Zm —|—sz71)(1 + (—a)zfl + (_G)QZ—Q +- )
zZ+a
Computing [z™ H (z)]+ yields
—a)™ + (—a)" Tz o ()™ T+ (—a)m e 4]
(~a)" e = a)(1 + (—a)a " + (—a)e™ )

M H ) = (

(—a)""Hc—a)z

zZ+a
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Thus from (4.57), the optimal predictor is given by

_,\ym—1 _ _,\ym—1 _
G2) = (—a)™ c—a)z z+a _ (—a)™ Y c—a)z
z+a z+c zZ+c
4.10 From (4.58),

e = Lo o] [o] = [esto 1] [t

This is a state space equation, implying that the joint process (z, y) is Markov.
4.11 A proof is by direct substitution.
4.12 By definition,

1 oo
D,y (2) = Z C(ATYT=1CT 271+ A,,(0) + Z CA-ICT !

l=—oc0 =1

Since CT = AIICT + S, we compute the terms that include S. Thus,

-1 oo
Ig:= Y STAT)T10T71 4+ ) cal-lse
=1

l=—oc0

=57 (i(AT)llzl> ct+cC (i Allzl> S

=1 =1
=ST(z" I —AT)ICT + C(2I — A)7'S
=STwWre"YH) +w(2)s

Adding I to the right-hand side of (4.80) yields (4.81).

Chapter 5

5.1 This is a special case of Lemma 5.1.

5.2 Let K,(t) and P, (t) respectively be the Kalman gain and the error covari-
ance matrices corresponding to aQ(t), aS(t), aR(t), aP(0). We use the algorithm
of Theorem 5.1. For ¢ = 0, it follows from (5.41a) that

K, (0) = [A(0)aP(0)CT (0) + B(0)aS(0)][C(0)aP(0)CT (0) + aR(0)] !
= K(0)

Also, from (5.42a),

P, (1) = A(0)aP(0)AT(0) — K, (0)[C(0)aP(0)C™ (0) + aR(0)] KT (0)
+ B(0)aQ(0)B*(0) = aP(1)

Similarly, for ¢ = 1, we have K, (1) = K(1), P,(2) = aP(2), and hence induc-
tively Ko(t) = K(t),t=2,3,---.
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5.3 It follows that
o) = pa(t) = (¢ ¢ = 1)+ (&(¢ | £ = 1) = pa(t))
where Z(t |t — 1) L &(¢ | t — 1) — p(t). Thus we have
oi)=P|t—1)+ X(t)
Since X(t) > 0and P(¢t |t —1) > P(t | t) > 0, we get
>

() > Pt t-1)>Pt|6) >0, ()2 I(1)

5.4 Follow the hint.
5.5 The derivation is straightforward.
5.6 Substituting A = & + SR~'C into (5.68), we have
K=[(®+ SR 'C)PC" + S](CPC* + R)™!
=oPCT(CPCT + R+ SR™' =T+ SR™*

Thuswe get A — KC =& —-IC.
It follows from (5.67) that

P =APAT - K(CPCT + R)KT + Q
= APAT — (' + SR Y)(CPCT + R)(I' + SR YT + Q@
=(@+SR™'C)P(®+ SR™'C)T
—(I'+ SR Y(CPCt* + R+ SR HT +Q
From the definition of I,
P=9¢P¢" —(CPC* + R)I'* +Q + SR *CPF*
+®PCTR™'ST + SR~'CPCTR™'ST
—I(CPCT + RR'ST — SR (cPCT + R)I'T
— SR™Y(CPC" + R)R7'ST
=oPo" —(CPC*" + R)I'" +(Q — SR™*ST)
This proves (5.70) since M = Q — SR™1S™T.
5.7 Equation (5.90) is given by
Y =AXAT + (O - AZCY)(A(0) —CcxCt)yH(C - CxAY)
Using A = F + CTA=(0)C, the first term in the right-hand side of (E.6) is
L :=(F+CTA Y 0)C)Z(F + CTA~ (0)O)T
=FYFT + CTA Y 0)CZFT + FXCTA 1(0)C
+ T A~ o)czcTA7H0)C

367

(E.6)
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Also, we have

CT—AxCT = —FXC" + CTA=1(0)(A(0) — CxCT)
so that the second term in the right-hand side of (E.6) becomes

L:=(-FXC" + 0T A710)[A(0) — cxCT))(A(0) —CcxC™) !
x (~FXCT + CTATH0)[A(0) —cxCc™)T
= Fxct(A(0) - cxct) 'CxFY - FXCt A7 (0)C
—CT"ATYH0)CEZFT + CT A7 (0)(A(0) — c2CTYA~ (0)C

Computing I7 + 1>, we get (5.91).

5.8 Since
FT 0 I, —-CTA=Y0)C
N=| _ |, L=
-CT'AY(0)C I, 0 F
we have
e [L—ctar 0T 0 1,7 [L —cTa )]
LJL" =
|0 FT _ AT inT
= [—F 0 ] =NJN

Consider the following two eigenvalue problems:
(A) Nz =\Lz B) L'z =uNTz
Let A # 0 be an eigenvalue of Problem (A). Since
det(LT — uNT) = det(L — uN) =0

we see that =1 /A is an eigenvalue of Problem (B). Also, pre-multiplying LTz =
uNTz by NJ yields

NJLz = }LNjNTl' = uLjLTm = Nz=upLz, z= JL
Thus . = 1/ is also an eigenvalue of Problem (A).

Chapter 6
6.1 (a) Since g =k, k=1, ---, go = 0, we have

H44 = s rankH44 =2

FENEUURE R
U = W N
O O i W
~ O Ot W~
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By using the MATLAB® program in Table D.1, we get

Ao {1.2182 —0.2182} . B= [—1.3039

0.2182 0.7818 0.8368]’ ¢ =[-1.3039 —0.8368]

Thus the transfer function is given by G(z) = z/(z — 1)%.

(b) In this case, the Hankel matrix becomes

1 0-1 0 0 1
0-1 0 0 1 0
-1 0 0 1 0-1
Hﬁﬁ = 001 0-1 ol rankH66 =4
01 0-1 0 1
1 0-1 0 1 O
so that we have
0.1450 0.8808 —0.3327 —0.3239 —1.0016
A= —0.8808 0.3551 0.3533 —0.0115 B— 0.1151
- 0.3327 —0.3533 —0.6187 —0.5087 | ’ — | —0.2418
0.3239 —0.0115 0.5087 —0.8814 0.2200

C =[-1.0016 —0.1151 —0.2418 — 0.2200]

Thus the transfer function is given by G(z2) = (2% + 22)/(z* + 2 + 22 + 2 + 1).

6.2 Let P be the reachability Gramian. Substituting A = SATS, B = SC7 into
(3.34) yields

P =APA" + BBT = SATSPSAS + SCTCS

Since SS = I, we get SPS = AT(SPS)A+C"™C. Thus the observability Gramian
is expressed as () = SPS. Though (A, B, C) are not balanced, both Gramians have
the same eigenvalues. Note that X (with 7' = I) is diagonal, i.e.,

k—1 oo
Es — ekeT _ ZAzBBT(AT)z <?£ ZAiBBT(AT)i _ P)

i=0 1=0

6.3 Since the orthogonal projection is expressed as E{A | B} = KB, K €
RP*4 the optimality condition is reduced to A — KB | B. Hence we have

(A-KB)B*=0 = K= (ABY)(BB")!

showing that E{A | B} = (ABT)(BBT)'B.
6.4 Since QT Qs = 0, two terms in the right-hand side of A = Lo Qf +
Los Qg are orthogonal. From B = L11(21r with B full row rank, we see that L7 is

nonsingular and QT forms a basis of the space spanned by the row vectors of B. It
therefore follows that E{A | B} = Ly1QT = Loy L, B. Also, from AQ; = Loy,
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we get B{A | B} = A(Q1QT). Since Ly»@Q3 is orthogonal to the row space of B,
it follows that E{A | B} = L22Q7T.

6.5 LetD = [g

] . Then, D has full row rank. Thus from Problem 6.3,
. BB' BCT17' [B
B{A| DY = Al5" ¢ Opn G| 0]

We see that the above equation is expressed as

BBT BCT}l [B]

B{A| DY = AlB" )| Epn g | |6

v o [BBY BCT17' [0
+AB O ][C’BT ccr| |c

Since span{B} N span{C} = {0}, the first term of the right-hand side of the above
equation is the oblique projection of the row vectors of A onto the space spanned by
the row vectors of B along the row vectors of C. Thus we have

BBT BCT17'[B
CBT CCT 0

Eyc{A| B} = A[BT C"] {

6.6 Note that Ry = [ém LO ] and R3o = [L42 Lys3). Let {Z] € Ker(Ry2).
32 L33

Then, Loon = 0 and L3on + L3zé = 0 hold. However, since Lo is nonsingular,
we have n = 0, so that L33¢ = 0. Thus it suffices to show that L33 = 0 implies
L3¢ = 0. Consider the following vectors

L3 0 0
L | | 0 | _] 0
L3z |>  |[Lss&| | O
Lys L3¢ L3¢

Lemmas 6.4 and 6.5 show that the above vector is also an input-output pair. However,
since the past input-output and future inputs are zero, the future outputs must be zero,
implying that L43¢ = 0. This completes the proof.
Chapter 7

7.1 Let Z(z) = B(z)/A(z). Let 2 = ¢’“. Then, we have

B(e’) _ c(w) + jd(w)

P = ey = a(w) +4b(w)

It thus follows that

ReZ(eI) = —T<w<T
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Hence Z(z) is positive real, if A(z) is stable and
a(w)e(w) + b(w)d(w) > 0, —T<w<T
From the given first-order transfer function, we have

c+ bcosw + jbsinw
a+cosw + jsinw

Z(e?¥) =
Thus from (E.7), the positivity is satisfied if z + a is stable and if
ac+ b+ (ab+ ¢)cosw > 0, —T<w<mT
It therefore follows that |ab + ¢| < ac + b and ac + b > 0. Hence, we have
la| < 1, le| < b, b>0

7.2 It can be shown that

Re[A(e?)] =14 a1 cosw + ay cos 2w

= 2a5 cos® W + aj cosw — ay + 1
For as = 0, we see that the positive real condition is reduced to
a; cosw+ 1> 0, T <w<T

This is satisfied if and only if —1 < a; < 1.
In the following, we assume that as # 0, and define

flx) =22+ (a1 /as)z + 1/aa —1, —-1<z<1

371

(E.7)

(E.8)

1. Suppose that as < 0. Then, from (E.8), the positive real condition becomes

flz) <0, -1<z<1

(E.9)

Since f(0) = 1/as — 1 < 0, (E.9) is satisfied if and only if f(—1) < 0 and

f(1) <0. Thus we have
as+a;+1>0, as—a;+1>0, as <0
2. Suppose that as > 0. In this case, the positive real condition becomes
flz) 20, 1<z <1

Let ; = —ay /4as. According to the location of 1, we have three cases:
a) If z; < —1, then f(—1) > 0. This implies that

0<as <a1/4, as >a; — 1
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b) If -1 <@y < 1,then f(x1) > 0, so that

azzﬁ, (hz_?, §+4<@_;>231 (E.10)
c) If zy > 1, then f(1) > 0. Hence, we have
0<as <—a1/4, as > —ay — 1,
Thus, the region D = {(a1,as) | Re[A(e’*)] > 0} is a convex set enclosed by
the two lines as = +a; — 1 and a portion of the ellipsoid in (E.10) [see Figure E.1].

2 1 2
as > ap — 1, as > —ap — 1, (1214-4(0,2—2) <1 (E.11)

A T

Figure E.1. Region of positive realness in (a1, a2)-plane

7.3 It is easy to see that Z(z) is positive real if and only if
f(z) :=1—al — a3 + 2a,a22 >0, -1<2<1
Thus the condition is given by
lay —az| <1, lag +as| <1 (E.12)

Remark E. 1. Tt will be instructive to compare the positive real conditions (E.11) and
(E.12) above and the stability condition (E.1). O

7.4 Using the Frobenius norm, we have

AB||I” _, AB][4AB]"
col|, "™ \lcp||cD
= trace(AA" + BBT + cC" + DD")

= |lAllz + 1Bl + [ICIIF + ||D[1F
< ([ Allr +|Bllr + IC||¢ + |1D]| )
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Taking the square root of the above relation, we get the desired result.

For the 2-norm, we define X = [é] , Y = [g} . By the definition of 2-norm,

|1 X]13 = 0(X)? =max A (ATA+ CTC)
< max M(ATA) + max M(CTC) = 4[5 +1IC13 < (IAll2 + |C]l2)?

Thus we get || X || < ||A[l2 + ||C||2. Similarly, we get ||Y]|2 < || B2 + || D]|2. Thus
combining these results,
X Y]|I3 = max A\(X X' +vY™)
<max A(XXT) + max A\(YYT)
= IX15 + Y113 < (1XTl2 + [[V]]2)?

Hence we have
X Yll2 < [IX]l2 + Y]l < [|All2 + [|Bll2 + |Cll2 + || D]|2

7.5 M(II) is easily derived. Let II = 3. Since M (II) = 8[/)3 g >0, we

see that II = 3 satisfies the LMI. Now suppose that II < 3. It then follows from
(7.35) that

9 3 3

Hence we have IT, = 1/3 and IT* = 3, implying that the solutions of LMI satisfy
1/3 < I < 3. Note that in this case F := A — CTA~1(0)C = 0; see (5.91).

7.6 By the definition of Cy and T (k),

817—1(1—117)20 = II>1/3

Q1 = Con T2k + 1)Ch 4

A(0) CEy,
erct T (k)

=[CT Aey]

et
CrAT

Note that this equation has the same form as (7.59). It is easy to see that {2, satisfies
(7.62) by the following correspondence in (7.60).

2, < 2, A & AT, C &C
7.7 First from (7.64), we note that
K(A(0) —CcHnc™) + Arrc™ =C* (E.13)
Substituting A = Ax + KC into (7.63) yields
II = (Ax + KC)II(Ag + KO)' + K(A(0) — CIICY K™
= AgII A} + KCIICTK™ + KCITA, + A ITCT K™
+ K(A(0) —CcIIC™)K™
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Again by using Ax = A — KC, it follows that
II = AxITAY + KCIICTKT + KCII(A - KC)" + (A—- KC)IICTK"™
+ K(A0) —CcITCT K™
= A A} + KCIIAT + AICTK" - KCITCT K™
+ K(A(0) = CIHCT)K™ + (KA(O)K™ — KA(0)K™)

Using (E.13) in the right-hand side of the above equation, we readily obtain the
desired result, i.e., (7.65).

7.8 In view of Subsection 7.4.2, the constraint is given by ¢ = OTu, so that the
Lagrangian becomes
L=uu+ (6~ 0u)

Differentiating £ with respect to u yields 2u — OX = 0. Thus, from the constraint,

we have
E—0Tor2=0 = A=20T0)7'¢

so that u = O(OTO)~'¢ holds. Hence we have min(u”u) = £7(0T0)7'¢.

Chapter 8
8.1 Itis easy to show that

LY 0 1[50 &L 0] [L'S,,L L'S,,M
0 M| | Sy Sy | |OM| T | MY, L MTS,,M

Thus from (8.9) and (8.10), the result follows. Also, the computation of the determi-
nant is immediate.

8.2 Though this can be proved by using the orthogonality condition a — Kb L b,
we give a different proof. See also Problem 6.3.
Since I := |ja — Kb||3; = traceE{(a — Kb)(a — Kb)"},

I = trace (E{aaT} — B{ab"} KT — KE{ba"} + KE{bbT}KT)

We see that the right-hand side is a quadratic form in K = (k;;).
Recall the formulas for the differentiation of trace (e.g. see [185]):

0 trace(AX) = AT, 0 trace(AXT) = A

0X 0X
a(?x trace(AXBXT) = ATXB" + AXB
Thus it follows that
oI

oK = —2E{ab™} +2KE{bb"} =0 = K =E{ab"}(E{bbT})™"
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8.3 Applying Lemma 4.11 to (8.48), we get

Ayy(l) = CA'RCT + CAT'KR
=CA=Y(AXC" + KR) = CA'7'CT

forl =1,2,---.Forl = 0, we have 4,,(0) = CYCT + R, so that we have the
desired result. We can show that Theorem 8.5 and Lemma 8.5 give the same result.

8.4 Since y is scalar, we note that 7, = T, L = M, HT = H hold. Thus
H:=L'"HL™T = UXVT is symmetric, so that H = UXVT = VXUT. Since
Im(H) = Im(U) = Im(V') holds, there exists a nonsingular matrix S € R"*" such
that U = VS. Since I, = UTU = STVTVS = STS, we see that S = VTU
is orthogonal. From UXVT = VXUT, we have ¥ST = SX, so that similarly to
the proof of Lemma 5.2, we can show that S = diag(+1, - -- , ) holds. By using

O=LUXY?, U=VS, ¥=SXS, we see that
Cc=x2ytMT = 225Ut Lt = X2t LT = S0t
holds, where we used the fact that S and X"/2 are diagonal. Thus,
e =8Nt et =oHTts
Hence, from (8.50), we get
A=e~el =sohHtohHts =sOtohts =s4ats

Also, from (8.52), ~
CT=ce1:n,1:p)=8C"T
implying that C' = C'S holds.

8.5 Since H = LiU, V' MY = LUy XVyE MY, and since Im(L,U;) =
Im(LsUs), there exists a nonsingular S € R™*™ such that LoUs = LiU;S.
Note that L; LT = LyL3 holds. Thus Z = L7'L, becomes an orthogonal ma-
trix with ZZ' = Z'Z = I. This implies that ZU, becomes an orthogonal
matrix, and hence S = U;(ZU,) becomes an orthogonal matrix. Again, using
LiUySVEME = LyUs DVE MY, and noting that My Mt = MM, it follows
that

UV = LT LyUy VP M Mt
so that
U220 = L7 LU XU LI Y = U, S525Tut
and hence
2 =6325T (E.14)

It should be noted that X2 is a diagonal matrix with different elements and that S
is orthogonal. Thus similarly to Lemma 5.2, we have S = (%1, --- , £1). In fact,
suppose that
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S = |:SZT1 (c]/:| 7 S,_1 € R(nfl)x(nfl)’ a, be Rnfl’ ceR
Then, from ST.S = I, we have ||a]|?> + ¢? = 1 and from (E.14)

2721715;{71 = Sn—lﬂifp X7

— 2 T _ 23T
h_1a=0,a, b*XY,_1=o0,b

Since o2 is not an eigenvalue of ¥2_,, we see thata = 0, b = 0, so that ¢? = 1.

By using LolUs = LU S and Uy SV,¥ = Ly LoUs XV,E MY MY,
=8IV, MI MV = 2SVE My MY YV = VTMT ML VLS = 1,

where we used the fact that det X # 0. Since the right-inverse of V;' M, Lis MV,
we get MyVoS = M1V, so that MoV, = M VA4S, Also, from (8.41),

Oy = LoUpy 52 = LU SEY? = 9,8
62 _ 21/2‘6TM; — 21/25‘/'1TMF — Sel

It thus follows from (8.50) that
Ay =e5el =serels =548
Moreover, from (8.51) and (8.52),

C’g:Og(l:p,lzn):Ol(lzp,l:n)Szcls
Co=0C(1:p,1:n)T=¢C(1:p,1:0)TS=0C,8

From (8.53) and (8.54), we have

Ry = A(0) — CoXCF = A(0) — C1SXSCE = A(0) — C12CL = Ry
Ky = (C) — Ay ZCY )Ry = (SO} — SA,SYSCTHR!
=S(Cf — 4, 2CHRT! = SK,

This completes the proof.
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Notation

R C Z

R™, C"

Rm)(n

Cm)(n

dim(z)

dim(V)

VvWw

V+W

span{v, w,z}

AT, AH

A1 AT

At

A>0

A>0

Al/2

det(A)

trace(A)

rank(A)

ACA), Xi(A4)

p(A)

o(A), 0;(A)

a(4), o(4)

Im(A)

Ker(A)

l|ll2,

14112, |
AB
CD

||

Allr

real numbers, complex numbers, integers
n-dimensional real vectors, complex vectors
(m x n)-dimensional real matrices

(m x n)-dimensional complex matrices
dimension of vector z

dimension of subspace V

vector sum of subspaces V and W

direct sum of subspaces V and W

subspace generated by vectors v, w,
transpose of A € R™*™ conjugate transpose of A € C™*"
inverse and transpose of the inverse of A
pseudo-inverse of A

symmetric, nonnegative definite

symmetric, positive definite

square root of A

determinant of A

trace of A

rank of A

eigenvalue, ith eigenvalue of A

spectral radius, i.e., max; |A\;(A4)]

singular value, ith singular value of A
minimum singular value, maximum singular value of A
image (or range) of A

kernel (or null space) of A

2-norm, oo-norm of

2-norm, Frobenius norm of A

transfer matrix G(z) = D + C(2I — A)"'B
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E{z} mathematical expectation of random vector

cov{z,y} (cross-) covariance matrix of random vectors x and y

N(u, X) Gaussian (normal) distribution with mean p and covariance matrix X

E{z |y} conditional expectation of z given y

(z,9)% inner product of = and y in Hilbert space H

||| ¢ norm of z in Hilbert space H

span{---}  closed Hilbert subspace generated by infinite elements {- - - }

E{z|Y} orthogonal projection of x onto subspace Y

E”z{x | Y} oblique projection of z onto Y along Z

a:=1» a is defined by b

a=:> b is defined by a

3 z-transform operator

z complex variable, shift operator z f(t) := f(t + 1)

Re real part

Ric(+) Riccati operator; (7.34)

Abbreviations

AIC Akaike Information Criterion; see Section 1.1

AR AutoRegressive; (4.33)

ARMA AutoRegressive Moving Average; (4.34)

ARMAX AutoRegressive Moving Average with eXogenous input; (1.4)

ARX AutoRegressive with eXogenous input; (A.7)

ARE Algebraic Riccati Equation; (5.67)

ARI Algebraic Riccati Inequality; (7.35)

BIBO Bounded-Input, Bounded-Output; see Section 3.2

CCA Canonical Correlation Analysis; see Section 8.1

CVA Canonical Variate Analysis; see Section 10.8

FIR Finite Impulse Response; (A.12)

v Instrumental Variable; see Section A.1

LMI Linear Matrix Inequality; see (7.26)

LTI Linear Time-Invariant; see Section 3.2

MA Moving Average; (4.44)

MIMO Multi-Input, Multi-Output; see Section 1.3

ML Maximum Likelihood; see Section 1.1

MOESP Multivariable Output Error State sPace; see Section 6.5

N4SID Numerical algorithms for Subspace State Space System
IDentification; see Section 6.6

ORT ORThogonal decomposition based; see Section 9.7

PE Persistently Exciting; see Sections 6.3 and Appendix B

PEM Prediction Error Method; see Sections 1.2 and 1.3

PO-MOESP Past Output MOESP; see Section 6.6

SISO Single-Input, Single-Output; see Section 3.2

SVD Singular Value Decomposition; see (2.26)
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conditional orthogonality, 241, 277
conditionally orthogonal, 241
controllable, 52
covariance function, 76
cross-, 78
covariance matrix, 76, 97, 175
conditional, 273, 274
of predicted estimate, 127, 130
CVA method, 298

data matrix, 149, 152
detectability, 53

detectable, 53

deterministic component, 245, 246
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realization of, 249 innovation model
deterministic realization algorithm, 145 backward, 133
deterministic realization problem, 142 forward, 130, 285
direct sum, 21 innovation process, 94, 116
decomposition, 246, 283 backward, 131
innovation representation, 219
eigenvalues, 18 innovations, 112
eigenvectors, 18 inverse filter, 86
ergodic process, 79
ergodic theorem joint distribution, 74
covariance, 81 joint input-output process, 242
mean, 80 joint probability density function, 74

error covariance matrix, 115 Kalman filter, 120

block diagram, 120
Kalman filter with inputs, 123

block diagram, 126
Kalman filtering problem, 113
kernel (or null space), 20

feedback system, 301

feedback-free condition, 242-244, 309

Fibonacci sequence, 145

filtered estimate, 119

filtration, 74

finite impulse response (FIR) model, 334,
339

Fourier transform, 47

full rank, 171

least-squares estimate, 330
generalized, 331

least-squares method, 33, 329

least-squares problem, 33, 329
basic assumptions for, 330
minimum norm solution of, 35

linear matrix inequality (LMI), 176

linear regression model, 109, 330

Gauss-Markov process, 96
Gaussian distribution
2-dimensional, 137
multivariate, 107 linear space, 19
Gaussian process, 76 linear time-invariant (LTI) system, 44
generalized eigenvalue problem (GEP), 134, LML 176, 177
204 LQ decomposition, 155, 162, 258, 288, 334
MATLAB® program, 155
Hankel matrix, 36, 37 LTI system
block, 55, 65, 227 external description of, 50
properties of, 143 internal description of, 49
Hankel operator, 36, 344 Lyapunov equation, 54, 99, 175

block, 142 Lyapunov stability, 50
Hankel singular values, 58, 216, 316
Hilbert space, 89 Markov model, 101, 212
Ho-Kalman’s method, 142 backward, 101, 176, 222
Householder transform, 23 forward, 101, 176, 222
reduced order, 226
identification methods Markov parameters, 49
classical, 4 Markov process, 75
prediction error method (PEM), 5 matrix
image (or range), 20 block, 39
impulse response, 45 inverse of, 39
matrix, 142 Hankel, 36

inner product, 17 Hermitian, 18



idempotent, 28, 40
numerical rank of, 33
observability, 56
orthogonal, 17
perturbed, 33
projection, 28
reachability, 51, 56
square root, 19
Toeplitz, 37
matrix input-output equation, 257
matrix inversion lemma, 39, 110
maximum singular value, 32
mean function, 76
mean vector, 76
minimal phase, 85, 244
minimal realization, 66
minimum singular value, 32
minimum variance estimate, 109, 114
unbiased, 115, 118
model reduction
singular perturbation approximation
(SPA) method, 62
SR algorithm, 315
model structure, 2
MOESP method, 157, 169
moment function, 75
moving average (MA) representation, 90
multi-index, 345, 347
MUSIC, 11, 170

N4SID algorithm, 166
N4SID method, 161, 170
direct, 8
realization-based, 10
norm
H..-, 47
H»-, 47
l2-induced, 48
Euclidean, 22
Frobenius, 22, 32
infinity-, 22
operator, 22

oblique projection, 27, 40, 161, 163, 240,
277
observability, 51
observability Gramian, 58
of unstable system, 63
observability matrix, 53

Index

extended, 66, 144
observable, 51
one-step prediction error, 5
optimal predictor, 280
ORT method, 256
orthogonal, 21
orthogonal complement, 21
orthogonal decomposition, 29, 245
orthogonal projection, 29, 40, 240
orthonormal basis vectors, 211
overlapping parametrization, 7, 343

PE condition, 151, 246, 275, 340
PO-MOESP, 291
PO-MOESP algorithm, 166, 259
positive real, 174, 184, 224
strictly, 174, 224
positive real lemma, 183, 185
predicted estimate, 118
prediction error method (PEM), 5
MIMO model, 8
prediction problem, 93, 242
predictor space, 209, 250
backward, 210, 218
basis vector of, 280
finite-memory, 286
forward, 210, 218
oblique splitting, 249
projection, 27
pseudo-canonical form, 7
pseudo-inverse, 34

QR decomposition, 23, 24, 26, 33
quadratic form, 17

random walk, 74, 77
rank, 21
normal, 72
reachability, 51
reachability Gramian, 58
of unstable system, 63
reachability matrix, 51
extended, 66, 144
reachable, 51
realizable, 67
realization, 56
balanced, 58, 59
finite interval, 286
minimal, 56
realization theory, 65

391
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recursive sequence, 67
reduced order model, 59, 316
regularity condition, 91

Riccati equation, 121, 127, 287

second-order process, 76
shaping filter, 86
shift invariant, 143
singular value decomposition (SVD), 30
singular values, 31, 168
Hankel, 58, 316
singular vectors, 32
left, 168
spectral analysis, 81
spectral density function, 81
spectral density matrix, 100, 173
additive decomposition, 173
spectral factor, 177, 179
spectral radius, 22, 72
splitting subspace, 212
oblique, 249, 250
SR algorithm, 315
stabilizable, 52
stable, 45
asymptotically, 50
state estimation problem, 114
state space model
block structure of, 253
state space system, 48
stationary Kalman filter, 129, 182, 214
stationary process, 77
second-order, 78
stochastic component, 245, 246
realization of, 248
stochastic linear system, 95
stochastic LTI system, 98
stochastic process, 73
full rank, 171, 243, 271
Hilbert space of, 89
regular, 90, 243, 271

singular, 90
stochastic realization, 12, 171
algorithm, 198, 227, 228
balanced, 219
based on finite data, 286
with exogenous inputs, 242
stochastic realization problem, 174, 207, 242
solution of, 176
with exogenous inputs, 272
strictly positive real, 174, 184
conditions, 194
subspace, 20, 148
Hilbert, 209, 243
invariant, 21
noise, 168
signal, 168
subspace identification
CCA method, 290
ORT method, 258, 260
deterministic subsystem, 258
stochastic subsystem, 260
subspace method, 8, 10
SVD, 145, 163, 166
and additive noise, 166
system identification, 1
flow chart of, 3
input signals for, 337

Toeplitz matrix, 37
block, 184, 227

variance, 76, 83
vector sum, 21

white noise, 74, 95, 114

Wiener-Hopf equation, 247, 274, 276
Wiener-Khinchine formula, 82

‘Wold decomposition theorem, 90, 243

zero-input response, 49, 142, 143, 156
zero-state response, 49
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