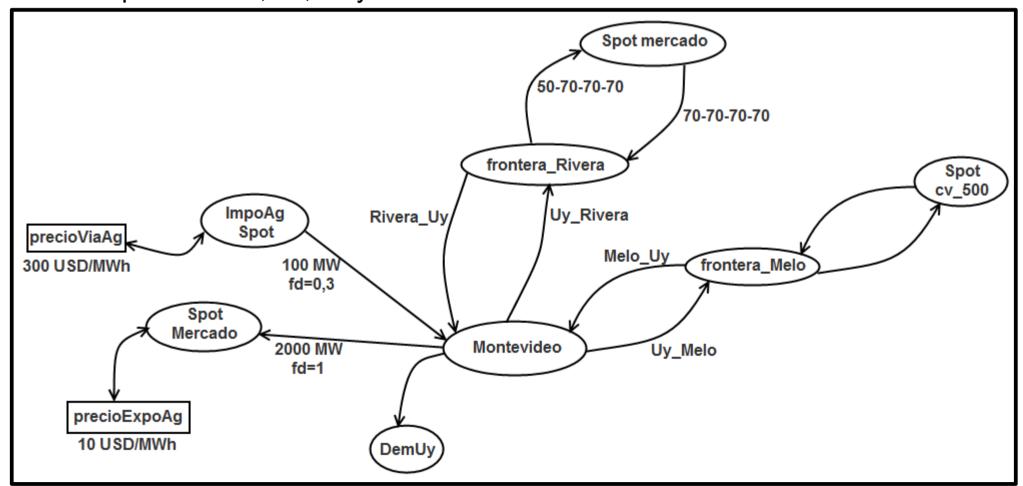
Simulación de Sistemas de Energía Eléctrica

Evaluación del riesgo del Costo Anual de Abastecimiento de la Demanda


Fernando Bianco, Antonio Sena Instituto de Ingeniería Eléctrica – FING. Abril - Mayo 2013 Montevideo – Uruguay.

Objetivo

- Analizar la distribución anual del Costo de Abastecimiento de la Demanda (CAD) 2016-2025 (10 años).
- Analizar los efectos sobre la figura del riesgo con una probabilidad de ocurrencia del 5% y sobre el valor esperado.
- Para los siguientes escenarios:
 - Influencia de los precios de los combustibles.
 - Atraso en entrada de inversiones (central de ciclo combinado y eólica).
 - Atraso de la integración con Brasil a través de la conversora Melo.

Hipótesis de trabajo

- No se contempla Aratirí (200 MW).
- Todos los generadores y demanda conectados al nodo Montevideo.
- Sala: "salaBaseCurso2013.ese",
 - duración del paso del tiempo es de 168 horas (1 semana), dividido 4 postes de 7, 28, 91 y 42 horas.

Proyección de la Demanda

- Proyección de la demanda: 3,5% y 5,5% anual.
- Modela: 4,5%+u; u una variable aleatoria con distribución uniforme [-1, 1].
- SimSEE: "Variabilidad_Demanda", "Componente Aleatoria".
- Para cada año un valor en forma independiente de los demás años.

Año	2009	2010	2011	2012	2013	2014	2015	2016	2017
Demanda (GWh)	8.995	9.394	9.805	10.154	10.611	11.088	11.587	12.109	12.654
Año	2018	2019	2020	2021	2022	2023	2024	2025	2026
Demanda (GWh)	13.223	13.818	14.440	15.090	15.769	16.478	17.220	17.995	18.805

Parque generador

- Centrales hidroeléctricas: Bonete", "Baygorria" y "Palmar" en el Río Negro y "Salto Grande" en el Río Uruguay (binacional compartida con Argentina en un 50%).
- El parque generador térmico que se toma en cuenta es:

	(MW)	(USD/MWh)	factor disp.	unidades
CB-5ta-FOP	80	187	0,84	1
CB-6ta-FOP	125	190	0,84	1
CTR_GO	110	280	0,84	2
Motores	10	166	0,84	8
PTI_GO	49	222	0,84	6
SalaB_FO	48	231	0,56	1

- La 5ta y la 6ta operativas hasta 2021.
- PTI_GO y SalaB_FO operativas hasta 2015.

Expansión de la generación

Gas Natural

- Precio indexado 100% con el precio de los combustibles líquidos.
- Pago por potencia 25 USD/MWh.

	(MW)	(USD/MWh)	fd	unidades
CC470_GN	180	104	0,85	2 (2015)-3 (2016)
PTI_GN	49	149	0,84	6 (2015)

Eólicos

- Eólico_L0: Se compone de unos 80 MW disponibles desde 2013. El pago por energía es 82,3 USD/MWh.
- Eólico_L1: 150 MW para el 2014. El pago por energía es 82,3 USD/MWh.
- Eólico_L2: 200 MW para el 2014. El pago por energía es 65 USD/MWh.
- Eólico: 200 MW para 2013 y aumenta gradualmente hasta 3000 MW en 2026. El pago por energía es 65 USD/MWh.

Expansión de la generación

Biomasa (desde 2015)

- 3 unidades de biomasa autodespachada de 40 MW, con costo variable de 1 USD/MWh; fd=0,85; pago por potencia 40 USD/MWh y pago por energía 49 USD/MW.
- 3 unidades de biomasa convocable de 40 MW, con costo variable 50 USD/MWh; fd=0,85; pago por potencia 70 USD/MWh y pago por energía 65 USD/MW.

Comercio internacional

- Argentina: conectado nodo Montevideo, exportación limitada a 2.000 MW y la importación 100 MW.
- Brasil spot-postizado: conectado nodo Rivera, exportaciones e importaciones oscilan entre 50 MW y 70 MW según poste.
- Brasil spot-postizado: conectado nodo Melo (desde 2014), exportaciones e importaciones limitadas500 MW.

Expansión de la generación

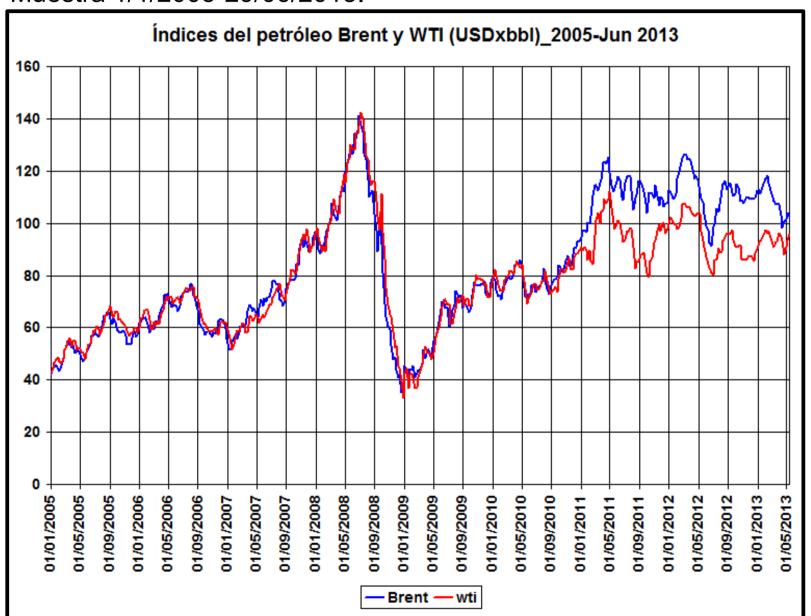
Precio de los combustibles

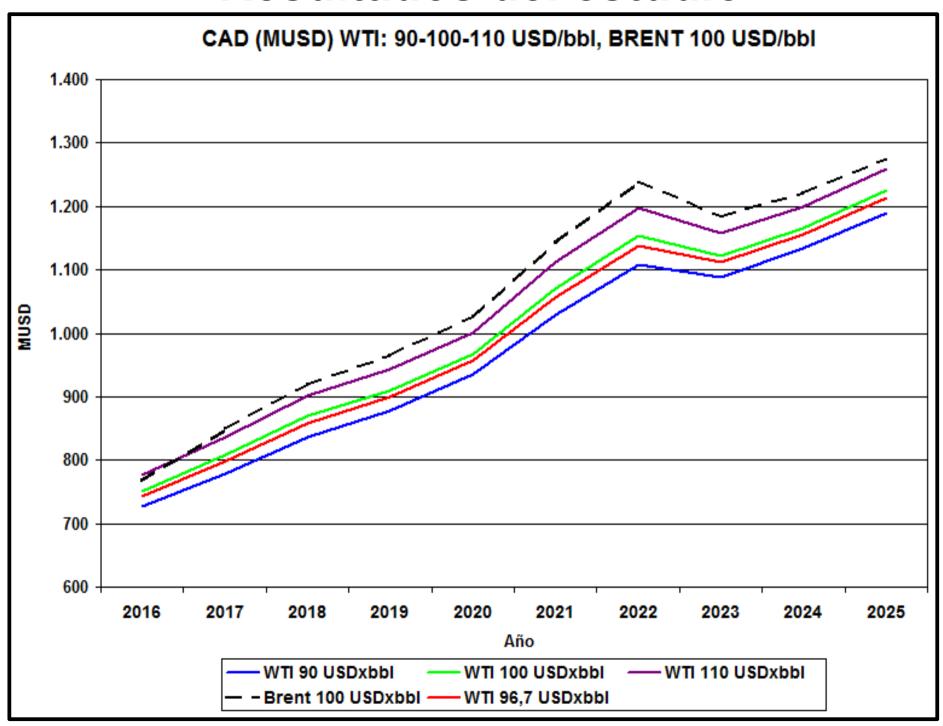
- Combustibles líquidos y gas natural indexados 100% con el precio del barril de petróleo.
- Modelados como un proceso estocástico CEGH que simula realizaciones del precio del WTI.
- Se indexan costos variables de generación térmicas con dicho índice.
- Se toma un precio para un barril de petróleo de 96,7 USD/bbl.

Costos de falla

 Cuatro escalones de profundidad del racionamiento relativos a la potencia de la demanda, indexados 100% con el WTI.

Escalón	1	2	3	4
Porfundidad (pu)	0,05	0,075	0,075	0,8
Costo (USD/MWh)	500	600	2400	4000

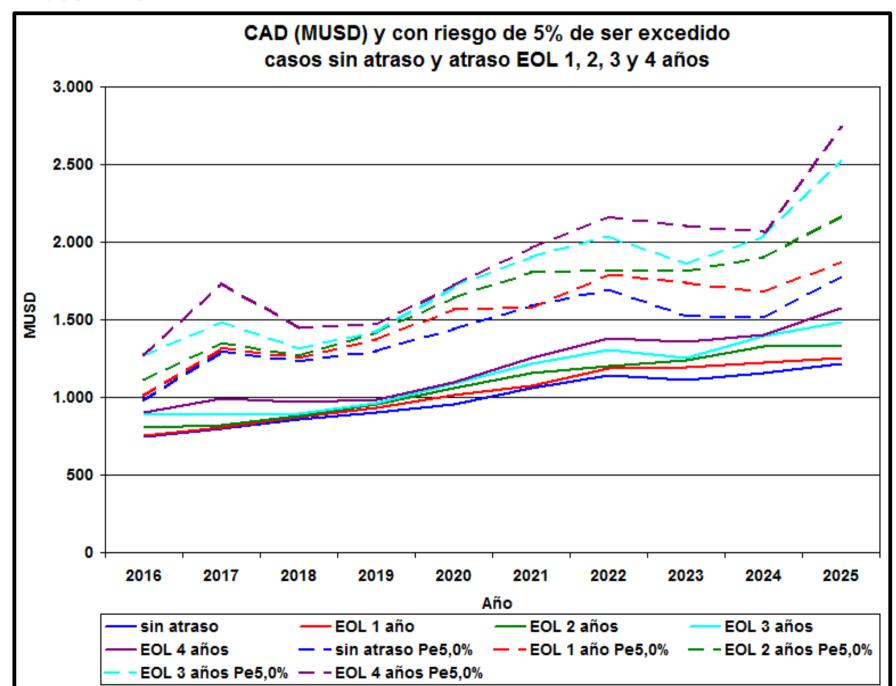

Metodología


- Def. CAD: suma costos variables de producción de la energía y los costos fijos de capital y de operación y mantenimiento de las nuevas inversiones.
- Plataforma Simulación de Sistemas de Energía Eléctrica SimSEE ver. 3,92c.
- Tasa de descuento anual 12% y los montos USD cte. Mayo 2013.
- Se estudia CAD atrasando en 1, 2, 3 y 4 años a:
 - Variación del precio del barril de petróleo y comparación índices WTI-Brent.
 - 200 MW de energía eólica en 2013 que aumentan hasta unos 3.000 MW en 2026 (EOL).
 - 800 MW de gas natural en 2015 (GN).
 - Interconexión con Brasil a través de la conversora Melo (INTER) en 2014.

Metodología

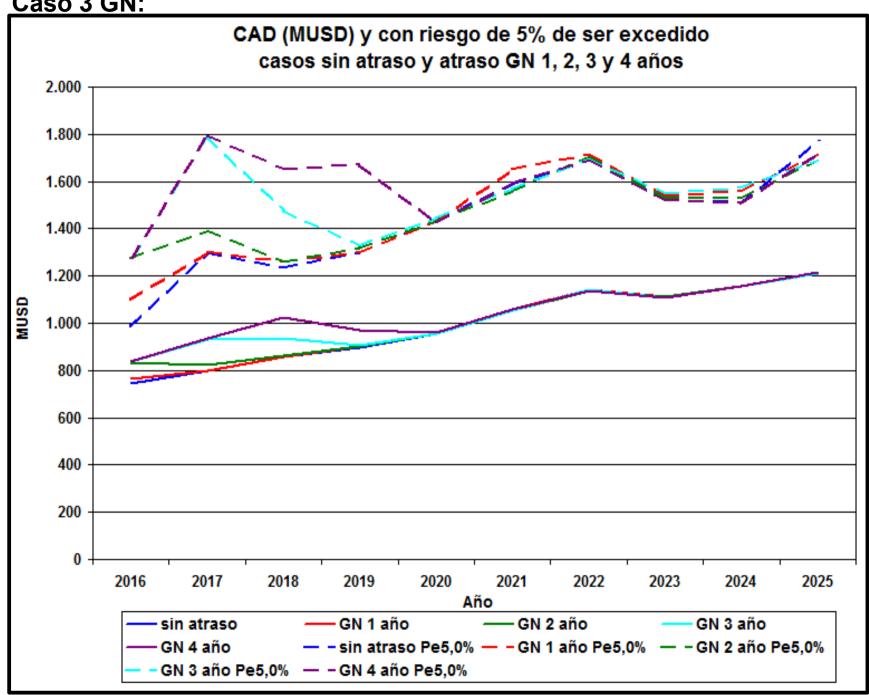
- También se estudia CAD según el precio del barril de petróleo 90-100-110 USD/bbl. Se comparan índices WTI y Brent 100 USD/bbl ("Informe sobre la propuesta de ajuste tarifario de UTE").
- Brent serie temporal período 1/1/2005-29/06/2013.
 - Modelo proceso estocástico CEGH.
 - "analisisserial": Valores por defecto del filtro, se analizó el efecto del orden del filtro y no se obtienen cambios significativos en la varianza de lo no explicado.

- Caso 1 BRENT: precios del barril WTI vale 90-100-110 USD/bbl y comparación contra BRENT 100 USD/bbl
 - Muestra 1/1/2005-29/06/2013.



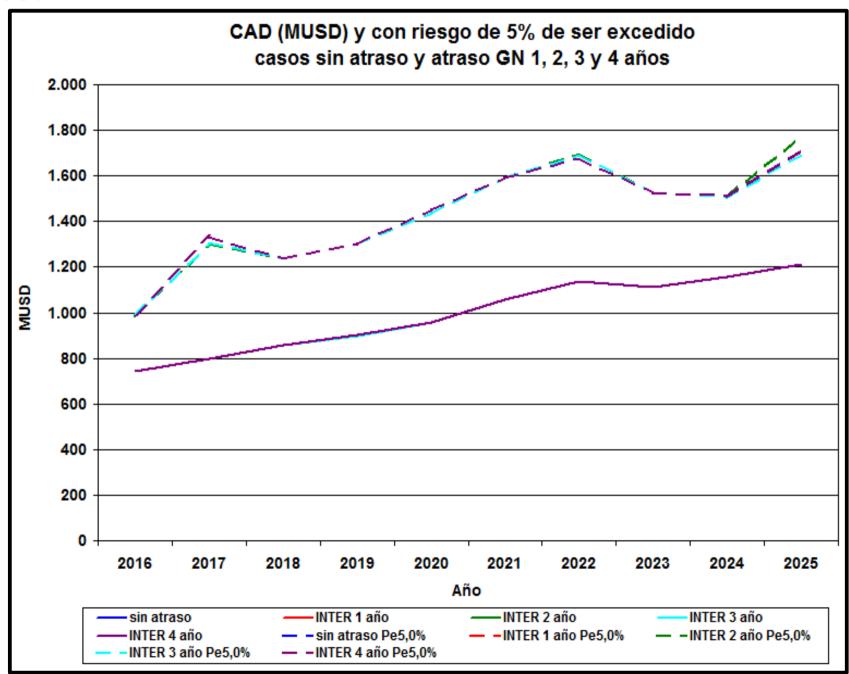
- CAD anual, en el caso base, va desde unos 740 MUSD en 2016 a unos 1.200 MUSD en 2025.
- WTI 110 USD/bbl: en 2016 CAD > 33 MUSD y en 2025 > 45 MUSD.
- Brent 100 USD/bbl, desde 2017 > WTI 110, en 2025 17 MUSD.
- Brent 100 USD/bbl > WTI 100 USD/bbl en 5%.
- Costo medio anual base: 61 USD/MWh en 2016, 67 USD/MWh en 2025, (WTI 110 USD/bbl) el costo medio es un 5% superior.

VAN diferencial (MUSD)								
WTI 90 USDxbbl WTI 100 USDxbbl WTI 110 USDxbbl Brent 100 USDxbbl								
Prom	Prom	Prom	Prom					
-126	61	246	350					


Caso 2 EOL:

• Atraso 4 años el costo medio es un 20% superior al base.

VAN diferencial (MUSD)										
EOL 1 año EOL 2 años EOL 3 años EOL 4 años										
Prom	Pe5,0%	Prom	Pe5,0%	Prom	Pe5,0%	Prom	Pe5,0%			
175	386	414	918	741	1.569	1.037	2.166			


Caso 3 GN:

• Atraso 4 años el costo medio es un 6% superior al base.

VAN diferencial (MUSD)									
GN 1 año GN 2 año GN 3 año GN 4 año					año				
Prom	Pe5,0%	Prom	Pe5,0%	Prom	Pe5,0%	Prom	Pe5,0%		
21	167	105	328	246	837	359	1.163		

Caso 4 INTER:

• Atraso 4 años el costo medio es un 4% superior al base.

	VAN diferencial (MUSD)									
INTER	INTER 1 año INTER 2 año INTER 3 año INTER 4 año									
Prom	Pe5,0%	Prom	Pe5,0%	Prom	Pe5,0%	Prom	Pe5,0%			
0	0 0 0 0 -26 0 9									

Conclusiones

- Ahorro en el CAD incorporando fuentes de generación EOL y GN.
- CAD barril Brent superior a WTI.
- La diferencia anual entre CAD en VE y con una PE5%, va desde 400 MUSD a 600 MUSD en promedio.
 - Con ambos se obtienen las misma conclusiones.
- Mayor diferencia entre minimizar el CAD-EOL que el CAD-GN:
 - atrasar EOL 1 año es equivalente a atrasar GN 2-3 años aprox.
 - Sensibilidad: puede deberse a que la instalación EOL > GN.
- Atrasar la EOL implica un CAD mayor siempre.
- Atrasar GN no, se alcanza la curva del CAD sin atraso.
- Interconexión con Brasil:
 - CAD en valor esperado es insensible.
 - PE5%: 1-2 años no cambia, 3 años CAD inferior.

Posibles futuros trabajos

- Estudiar el cambio del perfil de la demanda luego de una fuerte inserción de potencia instalada como la eólica y el gas natural.
- También se propone estudiar la gestión de la demanda para no entrar en situación de falla y minimizar el CAD, cuando se tiene una situación de hidraulicidad y de precio de petróleo adversas.
- Subdividir el nodo Montevideo, y estudiar el CAD en caso de falla de alguno de los subarcos.
 - Ver la posibilidad de integrar una alternativa tipo SmartGrid, que junto con Flucar y SimSEE resuelva el tema planteado.