

UTILIZACIÓN DE SIMSEE PARA PLANIFICACION DE LARGO PLAZO

Larisa Machado, Eliana Melognio.

Instituto de Ingeniería Eléctrica – FING.

Julio 2015

Montevideo - Uruguay.

IMPORTANTE: Este trabajo se realizó en el marco del curso Simulación de Sistemas de Energía Eléctrica (SimSEE) y fue evaluado por el enfoque metodológico, la pericia en la utilización de las herramientas adquiridas en el curso para la resolución del estudio y por la claridad de exposición de los resultados obtenidos. Se quiere dejar expresamente claro que no es relevante a los efectos del curso la veracidad de las hipótesis asumidas por los estudiantes y consecuentemente la exactitud o aplicabilidad de los resultados. Ni la Facultad de Ingeniería, ni el Instituto de Ingeniería Eléctrica, ni el o los docentes, ni los estudiantes asumen ningún tipo de responsabilidad sobre las consecuencias directas o indirectas que asociadas al uso del material del curso y/o a los datos, hipótesis y conclusiones del presente trabajo.

Objetivo

El objetivo del siguiente estudio es obtener un plan de expansión de largo plazo para el parque generador del sistema eléctrico de Uruguay y el despacho del mismo utilizando como herramienta el SimSEE.

Para este ejercicio se utilizaron como variables para definir las nuevas incorporaciones el gradiente de inversión acumulado y la energía no suministrada en el tercer y cuarto escalón de falla. Como variables adicionales se monitorearon las importaciones y exportaciones y el costo futuro al inicio del paso.

Hipótesis de trabajo

Para este trabajo se parte de la sala de largo plazo utilizada en el curso 2015 y se realizan algunas modificaciones de modo de tomar en cuenta las principales hipótesis consideradas por la Dirección Nacional de Energía (DNE)¹.

En cuanto a las variables globales, se considera como año base el 2014. Los horizontes de optimización y simulación son 2040 y 2035 respectivamente.

Se utilizó para el estudio como unidad de paso de tiempo el horario, con un total de 168 h por paso (semanal) y cuatro postes, con la duración de 5, 30, 91, 42 para los postes 1, 2, 3 y 4 respectivamente. Los pasos de optimización y simulación son 1304 y 1043 respectivamente. Estos parámetros son los correspondientes al caso de largo plazo tomado como base para el ejercicio.

¹Las autoras del presente trabajo son funcionarias de la DNE y realizan el curso en el marco de un programa de capacitación. En tal sentido se trata de considerar las principales líneas de trabajo de la institución.

La demanda que se tiene en cuenta para este trabajo es la del escenario tendencial del estudio de prospectiva de la DNE de 2014. La misma se muestra a continuación:

Demanda de Energía Eléctrica

Año	Demanda	Variación
	(GWh)	(%)
2013	10405.5	
2014	10582.4	1.7%
2015	10899.3	3.0%
2016	11261.6	3.3%
2017	11644.1	3.4%
2018	11990.8	3.0%
2019	12323.9	2.8%
2020	12659.9	2.7%
2021	13003.9	2.7%
2022	13355.4	2.7%
2023	13714.2	2.7%
2024	14080.1	2.7%
2025	14452.8	2.6%
2026	14831.5	2.6%
2027	15217.7	2.6%
2028	15611.6	2.6%
2029	16013.0	2.6%
2030	16421.4	2.6%
2031	16814.8	2.4%
2032	17230.1	2.5%
2033	17654.0	2.5%
2034	18086.5	2.4%
2035	18527.7	2.4%
2036	18990.9	2.5%
2037	19465.6	2.5%
2038	19952.3	2.5%
2039	20451.1	2.5%
2040	20962.4	2.5%

Esta demanda no considera el proyecto de minería de Aratirí.

No se modifica la hipótesis original tomada en el caso que agrega como componente aleatoria a la demanda el crecimiento industrial dado por este emprendimiento, por lo que se entiende que estaría considerado con este parámetro.

Se considera un solo Nodo (UY) en la red eléctrica en todo el período.

En cuanto a los demás actores considerados en el modelado del sistema eléctrico uruguayo, por un lado se detallan las hipótesis consideradas en las centrales de generación ya instaladas y decididas. Luego se muestran las hipótesis referentes a las centrales candidatas a ser instaladas, según la metodología que se describe posteriormente.

Costo de falla

Se asumen cuatro escalones de costo de falla cuyos costos se detallan a continuación:

Número de Escalones	4			
Escalón				
Profundidad [p.u.]	0.02	0.05	0.075	0.855
Costo [USD/MWh]	281.24	600	2400	4000
Índice multiplicador del costo de falla		iBRENT		

Estos corresponden a los valores vigentes para el sistema eléctrico uruguayo, definidos en el Decreto N° 105/013 del 2/Abril/2013

Centrales instaladas y decididas

Térmicas

Se consideraron las centrales térmicas actualmente instaladas: Central Batlle, Punta del Tigre (PTI), Central Térmica de Respaldo (CTR) y las centrales a biomasa. A continuación se detallan las principales características y el modelado en SimSEE.

Los precios del gasoil y fueloil que aparecen en las centrales térmicas que utilizan esos energéticos corresponden a un escenario de 87,77 USD/bbl2 (WTI) correspondiente a las proyecciones publicadas por el Dpto. de Planificación de DNE en su informe "Proyecciones de precios 2015".

En cuanto al gas natural, se considera disponible a partir del 1/9/2015, fecha en que se asume en funcionamiento la planta regasificadora. Estas hipótesis son tomadas también del área de PEB de la DNE, en las que se considera un valor de compra del GNL de 11,41 USD/MBTUpcs. A dicho valor se le adiciona una estimación de 2% de recargo de importación y una estimación inicial de 3,17% de autoconsumo de la regasificadora hasta el 2025. Este valor va disminuyendo a medida que aumenta el volumen de GNL regasificado. Como resultado, el valor del GN en boca de central se ubica en USD/MBTUpci 13,45.

² Obs: en la Programación Estacional nov14-abr15 se consideró el caso base para 95 USD/bbl WTI para dicho período.

Central Batlle (5ta unidad)

Se modela como un generador térmico con encendido y apagado por paso de tiempo. A partir de la fecha de entrada en operación se considera una unidad disponible.

	Fuel Oil
	03/01/2015
MW	20
MW	77
p.u.	0.5
h	360
USD/MWh	198.8
USD/MWh	150
USD/MWh	13.51
	iBRENT
	01/01/2021
	MW p.u. h USD/MWh USD/MWh

Central Batlle (6ta unidad)

Se modela como un generador térmico con encendido y apagado por paso de tiempo. A partir de la fecha de entrada en operación se considera una unidad disponible.

Energético		Fuel Oil
Entrada		Auto
Mínimo técnico	MW	30
Potencia máxima	MW	113
FD	p.u.	0.78
TMR	h	360
Costo variable en mínimo técnico	USD/MWh	214.85
Costo variable incremental	USD/MWh	148.4
Costo variable no combustible	USD/MWh	12.1
Índice de precios		iBRENT
Salida		01/01/2021

Motores Central Batlle

Se modela como generador térmico básico.

A partir de la fecha de entrada se modelan 8 unidades disponibles.

Energético		Fuel Oil
Entrada		Auto
Potencia máxima	MW	10
FD	p.u	0.75
TMR	h	180
Costo variable incremental	USD/MWh	139.66
Costo variable no combustible	USD/MWh	12.1
Índice de precios		iBRENT
Salida		01/01/2025

A continuación se detallan las hipótesis consideradas respecto a las centrales instaladas que funcionan a gasoil.

Central Térmica de Respaldo (CTR)

Se modela como generador térmico básico.

Energético		Gasoil
Entrada		Auto
Potencia máxima	MW	102
FD	p.u	0.75
TMR	h	180
Costo variable incremental	USD/MWh	251.45
Costo variable no combustible	USD/MWh	4.22
Índice de precios		iBRENT
Unidades disponibles		2
Salida		01/01/2025

Punta del Tigre (PTI)

Se modela como un generador térmico básico.

En este caso se asume que desde el inicio esta central funciona a gasoil como sucede actualmente. Sin embargo, cuando se asume la disponibilidad de gas natural a partir de la entrada en operación de la planta regasificadora, se considera que comienza a operar con dicho energético y se muestran los nuevos costos asociados.

Energético		Gasoil
Entrada		Auto
Potencia máxima	MW	48
FD	p.u	0.75
TMR	h	180
Costo variable incremental	USD/MWh	197.67
Costo variable no combustible	USD/MWh	8.7
Índice de precios		iBRENT
Unidades disponibles		6

A partir del 01/09/2015 cuando se asume la entrada de la planta regasificadora las nuevas características de esta central son las siguientes:

Energético		Gas Natural
Costo variable incremental	USD/MWh	122.23
Costo variable no combustible	USD/MWh	8.7
Índice de precios		iBRENT
Unidades disponibles		6

Ciclo Combinado 540

El ciclo combinado de 540 MW es una central no instalada pero decidida. Se modela como un "Generador Térmico Combinado" en SimSEE.

Se asume que comienza a funcionar con una turbina a fines de junio de 2015 según hipótesis de la DNE, usando como energético gasoil. La segunda turbina entra en octubre de 2015 y el ciclo se cierra con la turbo vapor en octubre de 2016.

A partir de octubre de 2015 cuando se asume la disponibilidad de gas natural el CC540 pasa a funcionar con este energético.

Datos TG (a gasoil)

Energético		Gasoil
Fecha inicio		27/06/2015
Min técnico	MW	36
Potencia máx	MW	180
FD	p.u	0.9
TMR	h	360
Costo variable en mín técnico	USD/MWh	275.8
Costo variable incremental	USD/MWh	193.6
Costo variable no combustible	USD/MWh	3.5
Pago por potencia	USD/MWh	18.2
Índice de precios		iBRENT

Datos TG (gas natural)

Fecha inicio		10/10/2015
Min técnico	MW	36
Potencia máx	MW	180
FD	p.u	0.9
TMR	h	360

Costo variable en mín técnico	USD/MWh	170.54
Costo variable incremental	USD/MWh	119.7
Costo variable no combustible	USD/MWh	3.5

Índice de precios	iBRENT

Datos TV (gas natural)

Fecha inicio		01/10/2016
Min técnico	MW	36
Potencia máx	MW	180

FD	p.u	0.9
TMR	h	360
Costo variable en mín técnico	USD/MWh	3.6
Costo variable incremental	USD/MWh	1.6
Costo variable no combustible	USD/MWh	5
Potencia TV/TG		0.5
Pago por potencia	USD/MWh	18.2
Indice de precios		iBRENT
Unidades disponibles		
Auto		[0;0]
27/06/2015		[1;0]
10/10/2015		[2;0]
01/10/2016		[2;1]

Hidráulicas

En el caso de las centrales hidroeléctricas, no se modifican las hipótesis del caso base utilizado. Por lo tanto se toman las cuatro centrales instaladas con los parámetros descritos a continuación.

También se toman para las fuentes de aportes las utilizadas en la corrida de base de largo plazo de la cual se parte el caso de estudio.

Baygorria

Esta central hidroeléctrica se encuentra modelada por el actor "Generador Hidráulico de Pasada", con tres unidades que están disponibles a partir del año base. Los parámetros se citan a continuación.

Área de la cuenca (há)	0
Cota de descarga (m)	38.9
Cota de toma (m)	53.8
Costo variable del agua (USD/Hm³)	0
Coeficientes de afectación del salto por caudal	0.000682
erogado (caQE)	
Coeficientes de afectación del salto por caudal	1.3E-8
erogado (cbQE)	
Rendimiento (p.u.)	0.866
Potencia máxima generable (MW)	36
Caudal máximo turbinable (m3/s)	236
Factor de disponibilidad (p.u.)	0.99
Tiempo de reparación (horas)	48

	perativo (m) 8	Salto mínimo operativo (m)
_	Jerativo (III)	Saito minimo operativo (m)

Fuente de aportes	CERO
Borne	CERO

Centrales encadenadas		
Central de descarga	Tipo de central	
Palmar	Central hidroeléctrica de pasada	
Centrales Aguas arriba	Tipo de central	Coeficiente
Bonete	Central hidroeléctrica con embalse	1

Bonete

Esta central se modela con el actor "Central Hidroeléctrica con Embalse", contando con cuatro unidades. Los parámetros con los que está definida esta central se describen en las tablas siguientes.

Cota mínima (m)	70
Cota máxima de operación (m)	81
Puntos cota-volumen h(m)	70.00; 75.50; 81.00
Puntos cota-volumen V (Hm3)	0.00; 2828.00; 8208.00
Área de la cuenca (há)	0
Cota de descarga para cálculo del salto (m)	53.8
Coeficientes de afectación del salto por caudal erogado (caQE)	0.00221
Coeficientes de afectación del salto por caudal erogado (cbQE)	-3.6E-7
Rendimiento (p.u.)	0.87
Potencia máxima generable (MW)	38.8
Caudal máximo turbinable (m3/s)	170
Factor de disponibilidad (p.u.)	0.99
Tiempo de reparación (horas)	48
Ca filtración (m3/s)	6.296
Cb filtración (m3/s)	0.255
Qa muy seco (m3/s)	140
Cota mínima para vertimiento (m)	76
Cota máxima para vertimiento (m)	86
Caudal vertido con la cota máxima (m3/s)	7630

Salto mínimo operativo (m)	16
,	= *

Fuente de aportes	BPS50yCMOBR
Borne	Bonete

Altura inicial (m)	79.3
Nro. De puntos de discretización de altura	10

Control de crecida cota de inicio (m)	81
Control de crecida cota de erogado a pleno (m)	83
Control de crecida caudal de erogado a pleno (m3/s)	5190

Calcular evaporación del lago	Si
Calcular filtración del lago	Si

Centrales encadenadas	
Central de descarga	Tipo de central
Baygorria	Central hidroeléctrica de pasada

Palmar

La central Palmar se modela como un actor tipo "Central hidráulico de pasada", con tres unidades disponibles. A continuación se enumeran los parámetros utilizados para definir esta instalación.

Área de la cuenca (há)	0
Cota de descarga (m)	5.5
Cota de toma (m)	38.9
Costo variable del agua (USD/Hm³)	0
Coeficientes de afectación del salto por caudal	0.00474
erogado (caQE)	
Coeficientes de afectación del salto por caudal	-4.94E-7
erogado (cbQE)	
Rendimiento (p.u.)	0.896
Potencia máxima generable (MW)	111
Caudal máximo turbinable (m3/s)	460
Factor de disponibilidad (p.u.)	0.99
Tiempo de reparación (horas)	48

Salto mínimo operativo (m)	16
----------------------------	----

Fuente de aportes	BPS50yCMOBR
Borne	Palmar

Centrales encadenadas		
Centrales Aguas arriba	Tipo de central	Coeficiente
Baygorria	Generador hidráulico de pasada	1

SG (Salto Grande)

La central de salto grande se modelo como un actor "Generador hidráulico de pasada", contando con un total de siete unidades disponibles con los parámetros listados que se presentan en el siguiente párrafo.

Área de la cuenca (há)	0
Cota de descarga (m)	4.5
Cota de toma (m)	34.05
Costo variable del agua (USD/Hm³)	0
Coeficientes de afectación del salto por caudal	0.00181
erogado (caQE)	

Coeficientes de afectación del salto por caudal erogado (cbQE)	-9.2E-8
Rendimiento (p.u.)	0.858
Potencia máxima generable (MW)	135
Caudal máximo turbinable (m3/s)	630
Factor de disponibilidad (p.u.)	0.99
Tiempo de reparación (horas)	48

Salto mínimo operativo (m)	15
----------------------------	----

Fuente de aportes	BPS50yCMOBR
Borne	Salto

Eólicas

Los parques eólicos existentes se modelan dentro de "Parques eólicos" asumiendo que cada uno es de 1MW con las siguientes características:

Fecha de inicio		Auto
Factor de disponibilidad	p.u.	1
Tiempo de reparación	h	0
Factor de pérdidas por interferencias	pu	1
Velocidad mínima	m/s	0
Velocidad máxima	m/s	1

Restar para postizar	Si
----------------------	----

Unidades disponibles		
Auto	MW	300
01/05/2015	MW	640
01/11/2015	MW	1200

Precio por energía entregada	USD/MWh	0
Precio por energía disponible	USD/MWh	65

Para la fuente de vientos se toma la misma que el caso base de largo plazo.

Biomasa

Todas las centrales a biomasa se modelan como Generador térmico básico. A continuación se muestran los cuatro actores de biomasa modelados:

Actor: Biomasa Autodespachada Existente

Potencia máxima	MW	7
FD	p.u	0.664

TMR	h	180		
Costo variable incremental	USD/MWh	0.1		
Costo variable no combustible	USD/MWh	0		
Pago por energía	USD/MWh	90		
Unidades disponibles				
Auto		8		
Índice de precios ibioautodespachada		pachada		

Actor: Biomasa celulosa

Potencia máxima		
(en 2014)	MW	21.7
01/01/2015	MW	31.7
01/04/2015	MW	35

FD	p.u	1
TMR	h	336

Costo variable incremental	USD/MWh	0.1
Costo variable no combustible	USD/MWh	0

Pago por energía	USD/MWh	145
------------------	---------	-----

Unidades disponibles	
Auto	3

Actor: Biomasa autodespachable ampliación

Potencia Máxima		Proyecto	Total
01/01/2015	MW	5.7	5.7
01/01/2016	MW	8	13.7
01/03/2017	MW	29.5	43.2
01/03/2018	MW	38.1	81.3

FD	p.u	1
TMR	h	180

Costo variable incremental	USD/MWh	0.1
Costo variable no combustible	USD/MWh	0

Pago por potencia	USD/MWh	0
-------------------	---------	---

Pago por energía	USD/MWh 90
Indice de precios	ibioautodespachada
Unidades disponibles	
Auto	1

Actor: Biomasa convocable ampliación

Potencia máxima	MW	50
FD	p.u	0.482
TMR	h	180

Costo variable incremental	USD/MWh	0.1
Costo variable no combustible	USD/MWh	0

Pago por energía (USD/MWh)	USD/MWh	90
----------------------------	---------	----

Unidades disponibles	
Auto	0
01/08/2018	1

	l
Indice de precios	ibioautodespachada
marce de precios	ibioautoucspaciiaua

Solar

Actor: SolarPV2015

Se modela como Parque Eólico con unidades de 1 MW. Para la fuente se mantiene la del caso base de largo plazo.

Fecha de inicio		Auto
Factor de disponibilidad	p.u.	1
Tiempo de reparación	h	0
Factor de pérdidas por interferencias	pu	1
Velocidad mínima	m/s	0
Velocidad máxima	m/s	1
FC		0.17
Restar para postizar		si
Unidades disponibles		

Auto	MW	0
01/05/2015	MW	200

Precio por energía entregada	USD/MWh	0
Precio por energía disponible	USD/MWh	91.5

Centrales candidatas

Para definir la expansión del sistema se tomaron en cuenta tres tipos de centrales candidatas: eólicas, ciclo combinado de 180 MW (CC180) y solar fotovoltaica. Para el ciclo combinado se toman los parámetros de funcionamiento con gas natural como combustible. En el caso de los generadores renovables se mantienen las fuentes del caso base de largo plazo.

Eólica

Actor: Eólica

Factor de disponibilidad	p.u.	1
Tiempo de reparación	h	0
Factor de pérdidas por interferencias	pu	1
Velocidad mínima	m/s	0
Velocidad máxima	m/s	1

FC	0.45

Precio por energía entregada	USD/MWh	0
Precio por energía disponible	USD/MWh	65

Solar

Actor: SolarPV

Se modela como un Parque Eólico.

Factor de disponibilidad	p.u.	1
Tiempo de reparación	h	0
Factor de pérdidas por interferencias	pu	1
Velocidad mínima	m/s	0
Velocidad máxima	m/s	1

Precio por energía entregada	USD/MWh	0
Precio por energía disponible	USD/MWh	65

Ciclo combinado

Actor: CC180

Datos de la TG:

Energético		Gas Natural
Min técnico	MW	12
Potencia máx	MW	60
FD	p.u	0.9
TMR	h	360
Costo variable en mín técnico	USD/MWh	170.54
Costo variable incremental	USD/MWh	119.7
Costo variable no combustible	USD/MWh	3.5

Datos de la TV:

MW	60
p.u	0.9
h	360
	111111

Costo variable en mín técnico	USD/MWh	3.6
Costo variable incremental	USD/MWh	1.6
Costo variable no combustible	USD/MWh	5

Pago por potencia	USD/MWh	20
-------------------	---------	----

Indice de precios	iBRENT	
·		
Potencia TV/TG	0.5	

Importaciones y exportaciones

A continuación se presentan las hipótesis asumidas en cuanto al intercambio de energía eléctrica con Brasil.

Importaciones y exportaciones con Brasil

Actor: BR

Se modela como actor "Spot de mercado postizado".

Potencias por poste:	
PMins:	-570 ; -570 ; -570 ; -570
PMaxs:	570 ; 570 ; 570 ; 570

Tope para Extracciones del mercado [USD/MWh]	500
--	-----

Tope del vendedor para Inyecciones al mercado [USD/MWh]	500
Tope del vellacadi para invecciones ai mercado (030/141441)	300

Costos variables por poste:	Costos marginales de Brasil
Costos fariables per poster	Costos marginares de Brasil

Delta Exportaciones USD/MWh	300
Delta Importaciones USD/MWh	300

Coeficiente de disponibilidad fortuita [p.u.]	0.85
Tiempo de reparación [horas]	360

Exportaciones sumidero

Actor: Export sumidero

Se modela como spot de mercado.

Fecha de inicio	Auto
Pmín [MW] [Negativo]	-2000
Pmáx [MW]	0
Factor de disponibilidad [p.u.]	1

Exportaciones

Actor: Exportaciones

Igualmente que en el caso anterior se modela como spot de mercado.

Fecha de inicio	Auto
Pmín [MW] [Negativo]	-300
Pmáx [MW]	0
Factor de disponibilidad [p.u.]	1

Metodología

El ejercicio fue resuelto por medio de iteraciones en las que se fueron probando distintas configuraciones del sistema incorporando potencia adicional a medida que fue siendo necesaria y conveniente. Para esto se tuvieron en cuenta criterios definidos de antemano que se debían cumplir para la selección de las candidatas, el momento de puesta en operación de las centrales y la potencia que fueron siendo incorporadas.

Los ingresos se fueron haciendo de manera escalonada, de manera de ir evaluando cómo estas incorporaciones influían en las variables utilizadas para la selección.

Para la optimización se utilizaron 5 crónicas y 31 como semilla aleatoria. Se permitió la opción realizar sorteos y restar utilidades de costo futuro. Para la simulación 10 crónicas, con 2 iteraciones y 31 como semilla aleatoria.

Criterios para la selección de las centrales a incorporar

A continuación se describen los criterios utilizados para las sucesivas adiciones de potencia y tecnologías.

Para definir el tipo de tecnología más conveniente se utilizó el gradiente de inversión³ acumulado para las diferentes candidatas (solar, eólica y ciclo combinado a gas natural) como primer criterio para obtener el plan de expansión. El mismo se calcula de la siguiente manera:

$$\nabla Inv_T = E_T \times Cmg_{Uv} - E_T \times CE_T$$

 ∇Inv_T : gradiente de inversión de la tecnología T (USD)

 E_T : energía generada con la tecnología T (MWh)

 Cmg_{Uv} : costo marginal de abastecer la demanda de Uruguay (USD/MWh)

 CE_T : costo para el sistema de la energía generada para la tecnología T (USD/MWh)

Se toma como condición favorable de incorporación de potencia adicional, el momento para el cual el gradiente de inversión acumulado presenta valor positivo y creciente, caso en el cual es conveniente para el sistema incorporar mayor potencia de la tecnología dado que el costo de utilizarla es menor que el costo marginal del sistema. De esta forma se fue seleccionando por medio de la comparación de los gradientes de las distintas tecnologías, teniendo en cuenta en primera medida aquella que alcanzara esta condición primero.

 $^{^3}$ El gradiente de inversión de una tecnología dada es la diferencia entre el ingreso marginal ($E_T \times Cmg_{_{U_V}}$) de dicha tecnología y el costo al sistema por utilizarla ($E_T \times CE_T$).

Se utilizó como segundo criterio disminuir las incidencias de falla 3 y 4 (sumadas) dado el alto costo de las mismas. En este caso se realizaron iteraciones ingresando potencia adicional en los años en que estos valores eran importantes y en el caso de que la tecnología seleccionada únicamente con el primer criterio no lograra mejorar esta condición se incorpora una candidata de otro tipo teniendo en cuenta el la energía generada con respecto a la firmeza de la potencia. Dadas las tres tecnologías utilizadas como candidatas para el ejercicio, para cumplir este criterio se incorporaron ciclos combinados a gas natural cuando el sistema lo requería.

Por otro lado se fue monitoreando el comportamiento de los intercambios internacionales, tratando de disminuir las importaciones y las exportaciones a sumidero. Estas últimas corresponden a energía exportada a un precio unitario para visualizar los posibles excedentes de energía que no puedan ser colocados en el mercado internacional. Un valor muy alto estaría alertando sobre un posible exceso de generación ocasionado por un sobredimensionamiento del sistema. Una vez cerrada la iteración, se calculó el porcentaje de energía correspondiente a fallas con respecto a la demanda total.

Por último se observó conjuntamente con los criterios anteriores el comportamiento del costo futuro al inicio del paso, de manera que evolucionara a valores menores con las sucesivas incorporaciones.

Proceso de iteración

Se realizaron para la iteración aproximadamente treinta corridas, a continuación se resumen los sucesivos pasos de la iteración para llegar al resultado final.

Para la corrida inicial se consideró la potencia ya instalada y la decidida a incorporarse en el 2015. Esta corrida se utilizó para evaluar indirectamente a las candidatas, dado que los parámetros de las tecnologías eólica, solar y ciclo combinado con gas natural instaladas hasta ese momento coinciden con las mismas.

Por otro lado se decidió en base a esta corrida, teniendo en cuenta la ocurrencia de falla 3 y 4 y las importaciones, a partir de qué momento se requería mayor potencia.

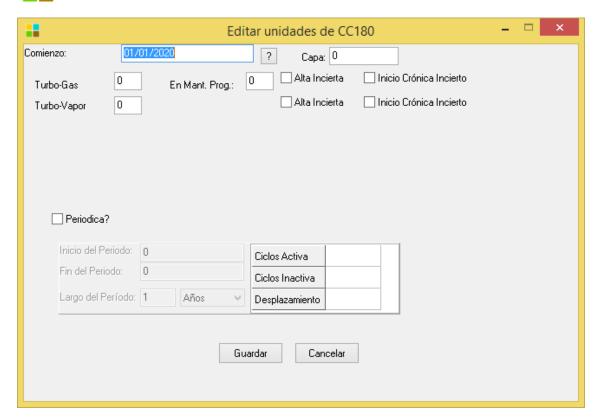
Se decide en este paso comenzar a incorporar potencia eólica adicional ya que comienza a tener gradientes favorables a partir del año 2015, en primera instancia se incorporan de a módulos de 50 MW anuales incrementando la potencia luego de cada corrida si aún se cumplía el primer criterio.

En las sucesivas incorporaciones se fue verificando la incidencia de falla tres y cuatro, que fueron disminuyendo sucesivamente, con la excepción de las correspondientes los años 2024, 2029 y 2034. En este punto se constató que a pesar de una mayor incorporación de energía eólica, la energía de falla tres y cuatro no se eliminaba completamente, ni se lograba disminuir de manera considerable, por lo que se procedió a dejar el mínimo de eólica cumpliendo el primer criterio y a incorporar la tecnología de

ciclo combinado a gas natural acorde al tercer criterio utilizado, para que estén disponibles a ciclo cerrado a principio de estos años en particular.

Para las corridas intermedias se verificaron la diminución de las variables importaciones, exportaciones a sumidero y el costo futuro al inicio del paso.

Herramientas utilizadas para la iteración


En todos los casos las incorporaciones de nuevos módulos se realizaron definiendo para cada tipo de candidata un único actor con sus características correspondientes y la incorporación de nueva potencia se realizó a través de las fichas "Unidades disponibles", incrementando el número de las mismas para las fechas seleccionadas.

A continuación se muestra como ejemplo la correspondiente a la energía eólica y ciclo combinado para la corrida inicial.

Eólica:

Para la verificación de los criterios definidos se utilizó la herramienta simres3, para lo cual se definieron algunos gráficos de interés para evaluar los criterios y monitorear los resultados.

Para el primer criterio se utilizaron los gráficos de los gradientes de inversión acumulados, impresos en la misma hoja, utilizando la función del SimRes3 "CompararValoresMultiplesCronVars" de la hoja "Impresión de variables crónicas", así como la tabla con los valores correspondientes, de manera de tener una mayor exactitud para definir las sucesivas incorporaciones.

Por otro lado se publicaron para el monitoreo los gráficos correspondientes a la energía de los cuatro escalones de falla por separado y las fallas tres y cuatro combinadas en una única gráfica. Para el monitoreo de los resultados se imprimieron de manera comparativa los gráficos de Demanda, Generación total y los correspondientes a los intercambios (Importaciones, Exportaciones y Exportaciones sumidero). De esta manera se controló las magnitudes relativas de los intercambios y valorar tanto el exceso como el déficit en la generación.

Se incorporaron los gráficos correspondientes a la energía de falla total, relativa a la demanda total (en energía y porcentual).

Además se imprimieron los gráficos de costo futuro al inicio del paso y la generación de algunas centrales relevantes para el ejercicio (generación eólica, generación de los ciclos combinados, etc.).

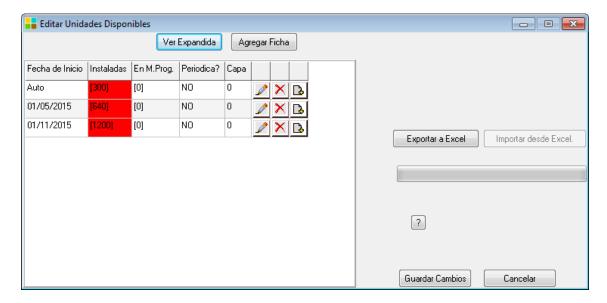
Por otro lado también se publicó el costo futuro al inicio del paso a través de la herramienta SimRes3,

En Anexo I, se resumen los parámetros definidos y las variables publicadas en el SimRes3.

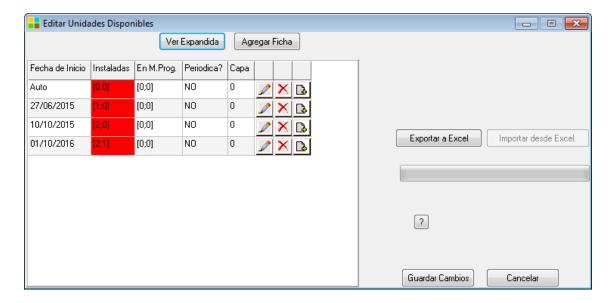
Resultados del estudio

En este apartado se muestra una selección de salidas intermedias del SimSEE que forman parte del proceso metodológico que se utilizó en este trabajo para arribar al resultado final de la expansión del parque generador al 2035.

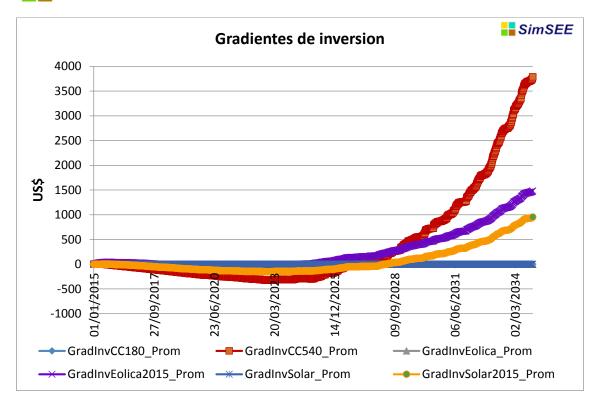
Como se adelantó en el punto 3 sobre la metodología, se ensayaron diferentes alternativas de incorporación de potencia según las candidatas predefinidas, utilizando como guía los gradientes de inversión, las fallas 3 y 4 (sumadas), las importaciones y exportaciones y el costo futuro a inicio del paso.


Se realizaron aproximadamente treinta corridas del SIMSEE con distintas pruebas de incorporaciones no sólo del tipo de potencia (eólica o ciclos combinados), sino también se probaron cantidades diferentes de potencia a instalar. Por esta razón no se publican todas las salidas sino que se realiza una selección con el objetivo de mostrar algunos resultados intermedios que forman parte del proceso realizado.

Por último se muestran los resultados de la salida final obtenida.

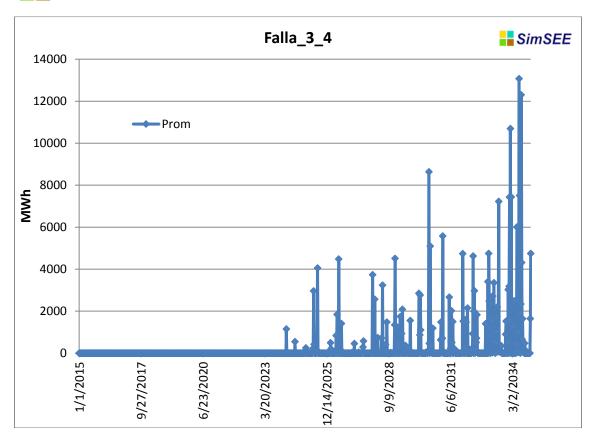

En primer lugar se exponen los resultados de la primera salida, que es lo que llamamos el caso base. En la misma se incluyen las centrales instaladas actualmente (las que se describen en el apartado 2 de hipótesis) y las incorporaciones ya decididas al 2015, de eólica y un ciclo combinado.

La eólica que se incorpora como parte de la política energética (ya decidida), alcanza los 1200 MW al 2015 y entra como se muestra a continuación.



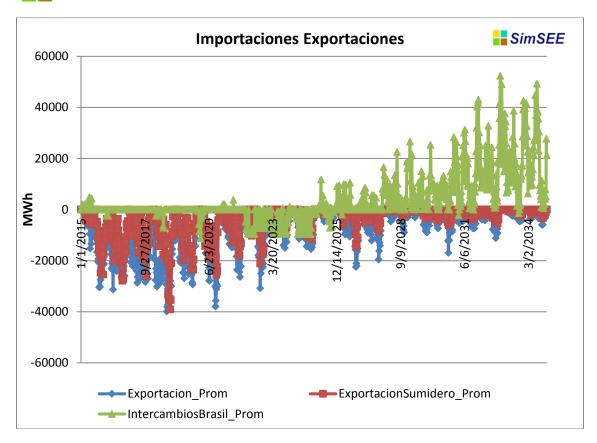
El ciclo combinado ya decidido es de 540 MW y se incorpora en etapas de la siguiente manera:

En este caso (sala), incorporando potencia hasta el 2015 se tiene como resultado el siguiente gráfico con los gradientes de inversión acumulados.

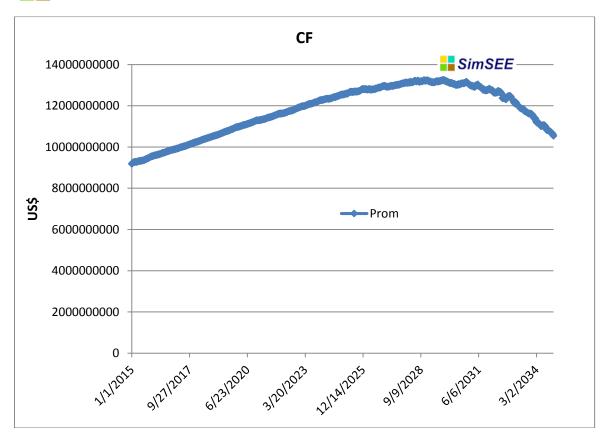


La eólica es la primera que comienza a tener un gradiente de inversión acumulado positivo y creciente, por lo que se deduce que es conveniente comenzar a invertir en potencia eólica. Así, en las posteriores corridas comienza a incorporarse potencia eólica.

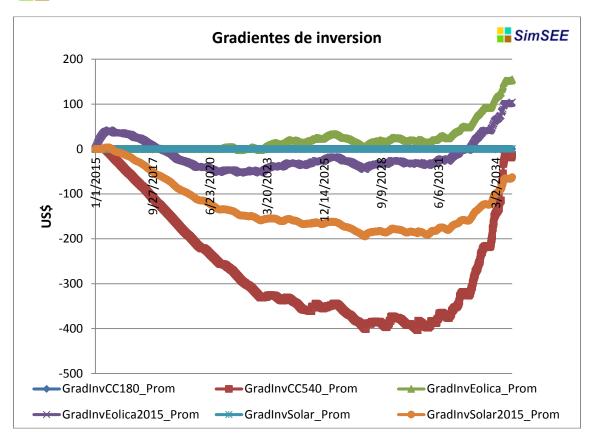
Si se observa el gráfico que contiene las fallas 3 y 4 sumadas, se encuentra que a partir del 2024 comienzan a aparecer valores positivos. Dado que el criterio utilizado aquí es de no tener estas fallas, esto indica la necesidad de incorporar potencia.



El gráfico siguiente muestra los intercambios de energía eléctrica, es decir, las importaciones y las exportaciones. En todo el período se registran exportaciones de los dos tipos que se definieron (sumidero con valor casi nulo de las mismas y exportaciones a la región).

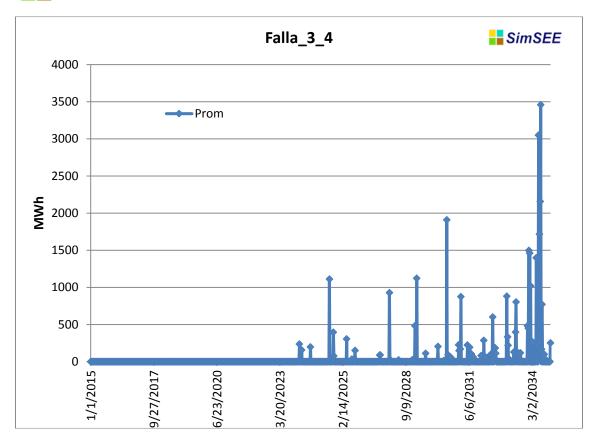

Los intercambios con Brasil, hasta el 2025 son en su mayoría exportaciones netas, sin embargo, a partir de ese año pasan a ser importaciones netas. Esto nuevamente da la pauta que la potencia instalada no es suficiente.

Por último se observa la evolución del costo futuro al inicio del paso. Este gráfico es de utilidad cuando es comparado con el mismo correspondiente a las demás corridas en las que se comienza a incorporar más potencia.

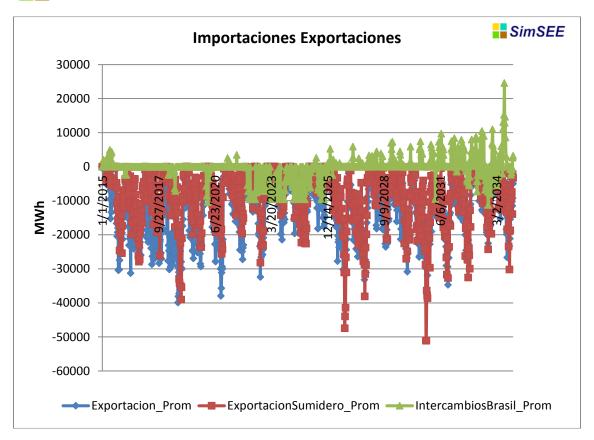


Corridas intermedias:

A partir del 2021 se comienza a agregar potencia eólica de a 50 MW por año. Se encontró que los primeros años el sistema admitía 100MW (en 2021 y 2022) de modo de cumplir con los criterios establecidos.


En 2024 siguen apareciendo los puntos con falla 3 y 4, por lo que se decide agregar 150 MW de eólica. Sin embargo, las fallas continúan.

Con dichas potencias de eólica se logra dejar horizontal la curva de gradientes de inversión acumulado de la eólica, si bien como se observa en el gráfico existen períodos con crecimiento de esta curva, lo que indica que se podría continuar agregando potencia.

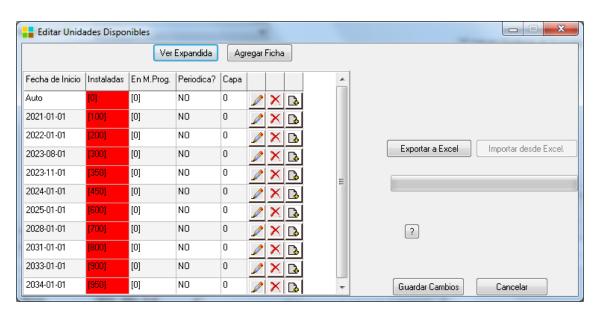


Aquí se muestran las fallas en el 2024 que no se logran eliminar con los 150 MW de eólica agregados en ese año. Asimismo, los años siguientes muestran fallas mayores, lo que implica que debe adicionarse potencia.

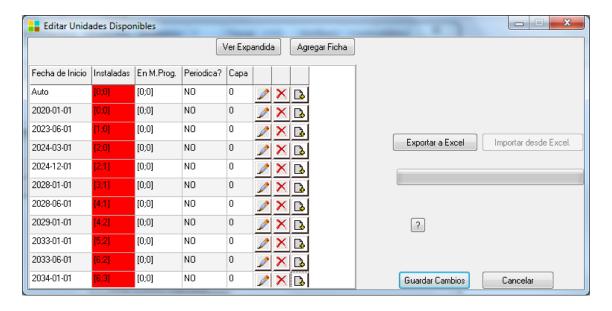
En cuanto al intercambio con Brasil, a partir del 2025 comienzan a registrarse importaciones promedio.

Los años anteriores en promedio se constatan exportaciones a Brasil, y las otras dos exportaciones definidas.

En las corridas posteriores se comienza a evaluar la instalación de ciclos combinados de 180 MW. El primero se incorpora en 2023 y cerrando el ciclo en 2024, con el fin de eliminar la falla ese año.

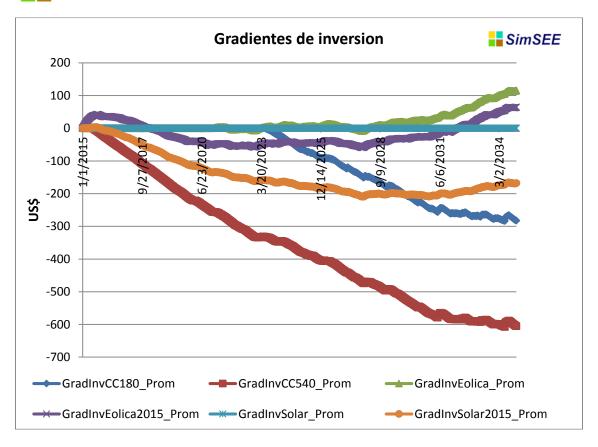

A medida que aparecían fallas y siempre observando los gradientes de inversión acumulados se combinó la incorporación de eólica y ciclos combinados. En los casos que la eólica (tomando como máximo 150 MW por año) no era suficiente para eliminar la falla, se decide incorporar otro ciclo combinado. Esto ocurre en 2023, 2028 y 2033.

El resultado final de estas incorporaciones fue la siguente.



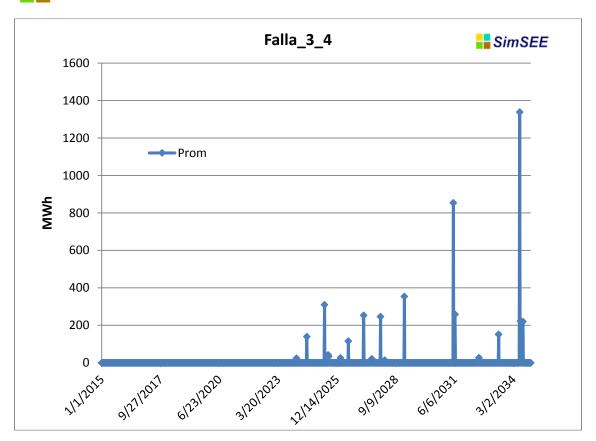
Corrida final:

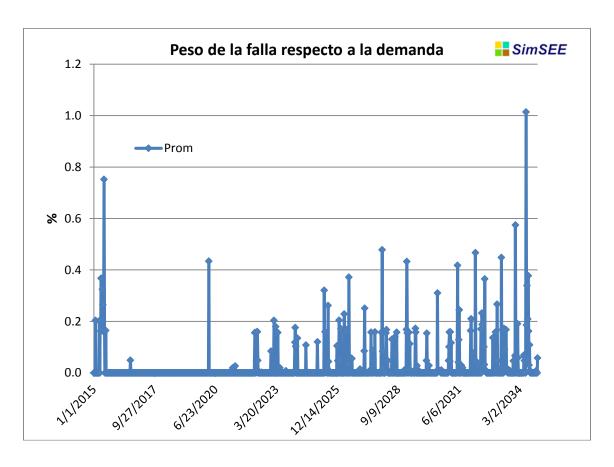
Eólica:


Ciclo combinado 180MW:

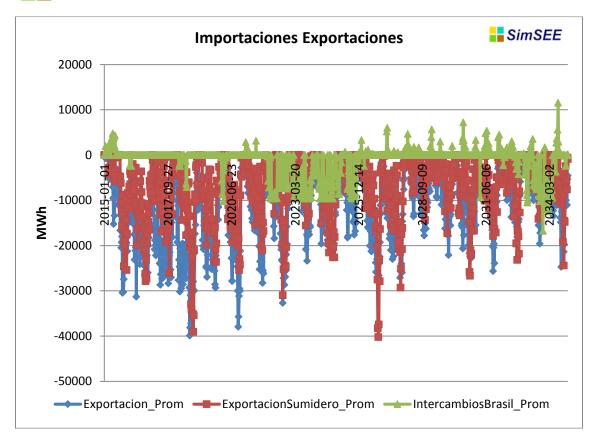
Los gráficos de gradientes acumulados, fallas 3 y 4, exportaciones y costo futuro para la última corrida realizada se muestran a continuación.

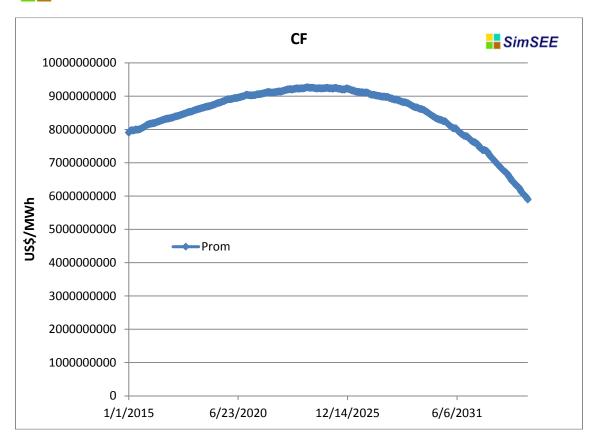
Los gradientes de inversión indican que al final del período podría ser conveniente la instalación de más eólica. Obsérvese que en los últimos diez años, se incorporan 350 MW, cifra muy inferior a la de los primeros años (a partir de 2016).





Se siguen registrando algunas fallas 3y4 puntuales, si bien las de mayor magnitud se ubican al final del período (en 2031 y 2034).


Sin embargo, el peso de las fallas en la demanda representa en promedio el 0,5% de la demanda, excepto en 2034 que alcanza el 1%. Particularmente los valores de falla 3 y 4 están comprendidos entre 0.01 y 0.30 %.



Si observamos el gráfico de importaciones y exportaciones, se puede ver la disminución relativa al caso base de las importaciones, pero aún sobre el final del período se registran algunos valores puntuales cuya magnitud es considerable. Esto podría indicar que aún se podría requerir potencia adicional.

Por último si se compara el gráfico de costo futuro de esta corrida con las anteriores se ve claramente que el mismo va disminuyendo a medida que se incorporan las centrales eólicas y los ciclos combinados y se llega a éste último que es el menor.

Como conclusión puede decirse que si bien ésta fue la última corrida realizada, se podrían haber realizado otros intentos incorporando más eólica al final del período. Esto no se realizó ya que las últimas corridas demoraron más de dos horas. Es de destacar que a medida que se avanzaba en las corridas y tenían más potencia instalada el tiempo era cada vez mayor y esto hace que el proceso de pruebas sea poco ágil.

5 Posibles futuros trabajos

Como posibles trabajos futuros en el ejercicio planteado, se plantea la posibilidad de incorporar variables de control o criterios adicionales para ir definiendo las incorporaciones, como por ejemplo el CAD (costo de abastecimiento de la demanda), margen de reserva, relación potencia renovable vs potencia firme, etc.

Por otro lado habría que plantear una sensibilidad a los parámetros de optimización, dado que en esta instancia no se pudo corroborar en qué medida la variación de los mismos afecta el resultado final. De esta manera se podría testear cual es el set más conveniente para la obtención de resultados relativamente robustos.

Dada la complejidad de la sala y los tiempos de ejecución del optimizador, se podría plantear la posibilidad de hacer las optimizaciones con un paso de tiempo mayor como primera aproximación para establecer a partir de qué años se darían los déficit de oferta y la magnitud de la potencia correspondiente, para partir de esa base en la sala con paso de tiempo horario en el que se haría el ajuste fino de las incorporaciones. De esta manera se intentaría disminuir los pasos de la iteración dado el tiempo de ejecución que demandan las salas complejas.

6 Anexo I

Índices

Nombre	Actor	Variable	Descripción
Idx_P_BIOM_A_AMP	BIOM_A_AMP	P	Potencia de la generación térmica a partir de biomasa autodespachada correspondiente a ampliaciones (ingreso posterior al año base)
Idx_P_BIOM_A_EXIST	BIOM_A_EXIST	P	Potencia correspondiente a la generación térmica a base de biomasa autodespachada existente al año base.
Idx_P_BIOM_CELULOSA	BIOM_CELULOSA	P	Potencia contratada correspondiente a generación térmica a base de biomasa asociada a los emprendimientos de las plantas de celulosa.
ldx_P_BIOM_C_AMP	BIOM_C_AMP	Р	Potencia contratada correspondiente a generación térmica a base de biomasa.
Idx_P_Baygorria	Baygorria	P	Potencia central hidroeléctrica Baygorria
Idx_P_Bonete	Bonete	P	Potencia central hidroeléctrica Bonete
Idx_P_CB_5ta	CB_5ta	P	Potencia central Batlle 5ta
Idx_P_CB_6ta	CB_6ta	Р	Potencia central Batlle 6ta
Idx_P_CC180	CC180	P	Potencia ciclo combinado 180 MW
Idx_P_CC540	CC540	P	Potencia ciclo combinado 540 MW
Idx_P_FO_MOT	FO_MOT	Р	Potencia motores a fuel oil
Idx_P_GN_PTI	GN_PTI	Р	Potencia Puntas del tigre
Idx_P_GO_CTR	GO_CTR	Р	Potencia CTR
Idx_P_Palmar	Palmar	Р	Potencia Palmar
Idx_P_SG	SG	Р	Potencia Salto grande
Idx_P_SolarPV	SolarPV	Р	Potencia solar fotovoltaica nueva
Idx_P_SolarPV2015	SolarPV2015	Р	Potencia solar fotovoltaica existente
Idx_P_eolica	eolica	Р	Potencia eólica nueva
Idx_P_eolica2015	eolica2015	Р	Potencia eólica existente
ldx_P_DemUY	DemUY	Р	Demanda de potencia del sistema eléctrico de Uruguay.
ldx_GradInv_CC180	CC180	GradInv	Gradientes de inversión del ciclo combinado de 180 MW

ldy Cradiny CCE40	CCE 40	GradInv	Gradientes de inversión del ciclo combinado de 540 MW
Idx_GradInv_CC540	CC540		
ldx_GradInv_eolica	eolica	GradInv	Gradientes de inversión de la eólica nueva
Idx_GradInv_eolica2015	eolica2015	GradInv	Gradientes de inversión de eólica instalada
ldx_GradInv_SolarPV	SolarPV	GradInv	Gradientes de inversión de solar fotovoltaica nueva
			Gradientes de inversión de solar fotovoltaica
Idx_GradInv_SolarPV2015	SolarPV2015	GradInv	existente
Idx_PF1_DemUY	DemUY	PF1	Potencia de falla, primer escalón.
Idx_PF2_DemUY	DemUY	PF2	Potencia de falla, segundo escalón.
Idx_PF3_DemUY	DemUY	PF3	Potencia de falla, tercer escalón.
Idx_PF4_DemUY	DemUY	PF4	Potencia de falla, cuarto escalón.
			Intercambios con Brasil (importaciones y
Idx_P_BR	BR	P	exportaciones)
Idx_P_Export_sumidero	Export_sumidero	Р	Exportaciones sumidero.
Idx_P_Exportacion	Exportacion	Р	Exportaciones Argentina.
Idx_CF_AlInicioDelPaso	-	CF_AlInicioDelPaso	Costo futuro al inicio del paso.

Variables crónicas

variables crofficas
Nombre
DemandaUY
GenEolica
GenCC180
GenCC540
GenEolicaNueva
GenTermBiomC
GenTermBiomA
GenTermBiomCelulosa
GenTermBiomExist
GenHidroBon
GenHidroBay
GenHidroPal
GenHidroSG
GenFO_MOT
Gen_PTI
Gen_CTR
Gen_5ta
Gen_6ta
GenSolar
GradInvCC180
GradInvCC540
GradInvEolica
GradInvEolica2015
GradInvSolar

GradInvSolar2015
Falla_3_4
Falla_1
Falla_2
Falla_3
Falla_4
Exportacion
ExportacionSumidero
IntercambiosBrasil
CF
GenTermBiomT
GenTermicaHC
GenEolicaT
GenHidroT
GenSolarT
GenTotal
FallaTotal
FallaPesoDemUY

Operaciones crónicas

Operación	Resultados	Parámetros Índice	Aclaración
sumaProductoConDurpos	DemandaUY	ldx_P_DemUY	Demanda de energía eléctrica de Uruguay
sumaProductoConDurpos	GenCC180	ldx_P_CC180	Generación ciclo combinado 180
sumaProductoConDurpos	GenCC540	Idx_P_CC540	Generación ciclo combinado 540
sumaProductoConDurpos	GenEolica	ldx_P_eolica	Generación de energía eólica existente
sumaProductoConDurpos	GenEolicaNueva	Idx_P_eolica	Generación de energía eólica adicional
sumaProductoConDurpos	GenTermBiomC	ldx_P_BIOM_C_AMP	Generación biomasa convocable ampliación
sumaProductoConDurpos	GenTermBiomA	ldx_P_BIOM_A_AMP	Generación biomasa autodespachada ampliación
sumaProductoConDurpos	GenTermBiomCelulosa	ldx_P_BIOM_CELULOSA	Generación biomasa plantas de celulosa
sumaProductoConDurpos	GenTermBiomExist	ldx_P_BIOM_A_EXIST	Generación biomasa autodespachada existente
sumaProductoConDurpos	GenHidroBon	Idx_P_Bonete	Generación hidroeléctrica Bonete
sumaProductoConDurpos	GenHidroBay	Idx_P_Baygorria	Generación hidroeléctrica Baygoria
sumaProductoConDurpos	GenHidroPal	ldx_P_Palmar	Generación hidroeléctrica Palmar

Dead at Corp.	C. JULY CO	LL D CC	Generación hidroeléctrica Salto
sumaProductoConDurpos	GenHidroSG	Idx_P_SG	Grande
sumaProductoConDurpos	GenFO_MOT	Idx_P_FO_MOT	Generación motores a fuel oil
sumaProductoConDurpos	Gen_PTI	Idx_P_GN_PTI	Generación Puntas del tigre
sumaProductoConDurpos	Gen_CTR	Idx_P_GO_CTR	Generación CTR
sumaProductoConDurpos	Gen_5ta	Idx_P_CB_5ta	Generación Central Batlle 5ta
sumaProductoConDurpos	Gen_6ta	Idx_P_CB_6ta	Generación central Batlle 6ta
sumaProductoConDurpos	GenSolar	ldx_P_SolarPV2015	Generación solar fotovoltaica existente
sumaProductoConDurpos	GenSolarNueva	ldx_P_SolarPV	Generación solar fotovoltaica adicional
suma	GradInvCC180	ldx_GradInv_CC180	Gradiente de inversión ciclo combinado 180
suma	GradInvCC540	ldx_GradInv_CC540	Gradiente de inversión ciclo combinado 540
suma	GradInvEolica	ldx_GradInv_eolica	Gradiente de inversión eólica adicional
suma	GradInvEolica2015	ldx_GradInv_eolica2015	Gradiente de inversión eólica existente
suma	GradInvSolar	ldx_GradInv_SolarPV	Gradiente de inversión solar fotovoltaica adicional
suma	GradInvSolar2015	ldx_GradInv_SolarPV2015	Gradiente de inversión solar fotovoltaica existente
sumaProductoConDurpos	Falla_1	Idx_PF1_DemUY	Energía de falla, primer escalón
sumaProductoConDurpos	Falla_2	ldx_PF2_DemUY	Energía de falla, segundo escalón
sumaProductoConDurpos	Falla_3	ldx_PF3_DemUY	Energía de falla, tercer escalón
sumaProductoConDurpos	Falla_4	ldx_PF4_DemUY	Energía de falla, cuarto escalón
sumaProductoConDurpos	Exportacion	Idx_P_Exportacion	Exportaciones argentina
sumaProductoConDurpos	ExportacionSumidero	Idx_P_Export_sumidero	Exportaciones sumidero (costo unitario)
sumaProductoConDurpos	IntercambiosBrasil	ldx_P_BR	Importaciones y/o exportaciones a Brasil (mercado spot)
suma	CF	Idx_CF_AlInicioDelPaso	Costo futuro al inicio del paso

Post operaciones

Tipo de operación	Resultados	Parámetros variables crónicas	Parámetros adicionales	Descripción
acumularCronVar	GradInvCC180	GradInvCC180	-	Gradiente de inversión acumulado ciclo combinado 180
acumularCronVar	GradInvCC540	GradInvCC540	-	Gradiente de inversión acumulado ciclo combinado 540
acumularCronVar	GradInvEolica	GradInvEolica	-	Gradiente de inversión acumulado eólica adicional
acumularCronVar	GradInvEolica2015	GradInvEolica2015	-	Gradiente de inversión acumulado eólica existente
acumularCronVar	GradInvSolar	GradInvSolar	-	Gradiente de inversión acumulado solar nueva
acumularCronVar	GradInvSolar2015	GradInvSolar2015	-	Gradiente de inversión acumulado solar fotovoltaica
combinarCronVars	Falla_3_4	Falla_3, Falla_4	coeficientes= [1, 1]	Energía de falla escalones 3 y 4.
combinarCronVars	GenTermBiomT	GenTermBiomC, GenTermBiomA, GenTermBi	coeficientes= [1, 1, 1, 1]	Generación térmica biomasa total
combinarCronVars	GenTermicaHC	GenCC180, GenCC540, GenFO_MOT, Gen_PT	coeficientes= [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]	Generación térmica combustibles fósiles total
combinarCronVars	GenEolicaT	GenEolica, GenEolicaNueva	coeficientes= [1, 1]	Generación eólica total
combinarCronVars	GenHidroT	GenHidroBon, GenHidroBay, GenHidroPal	coeficientes= [1, 1, 1, 1]	Generación hidráulica total

combinarCronVars	GenSolarT	GenSolar, GenSolarNueva	coeficientes= [1, 1]	Generación solar total
combinarCronVars	GenTotal	GenEolicaT, GenHidroT, GenSolarT, Gen	coeficientes= [1, 1, 1, 1, 1, 1]	Generación total
combinarCronVars	FallaTotal	Falla_1, Falla_2, Falla_3, Falla_4	coeficientes= [1, 1, 1, 1]	Energía de falla total
division Cron Vars	FallaPesoDemUY	FallaTotal, DemandaUY	-	Relación Energía de falla total/demanda total
cronVarPorReal	FallaPesoDemUY	FallaPesoDemUY	aReal= -100	Energía de falla total como % de la demanda total

Impresión de variables

Tipo	Variable crónica	Ноја	Título	Parámetros adicionales	Descripción
histograma	DemandaUY	DemandaUY	DemandaUY	Imprimir Promedio= SI, Graficar= SI,	Gráfico demanda de energía Uruguay
histograma	GenCC180	GenCC180	GenCC180	Imprimir Promedio= SI, Graficar= SI,	Grafico generación ciclo combinado 180 MW
histograma	GenCC540	GenCC540	GenCC540	Imprimir Promedio= SI, Graficar= SI,	Gráfico generación ciclo combinado 540 MW
histograma	GenEolicaNueva	EolicaNueva	EolicaNueva	Imprimir Promedio= SI, Graficar= SI,	Gráfico generación eólica nueva
histograma	GradInvCC180	GradInvCC180	GradInvCC180	Imprimir Promedio= SI, Graficar= SI,	Grafico gradiente de inversión acumulado ciclo combinado 180 MW
histograma	GradInvCC540	GradInvCC540	GradInvCC540	Imprimir Promedio= SI, Graficar= SI,	Grafico gradiente de inversión acumulado ciclo combinado 540 MW

Line	Coolle Felice	Condition Fulling	Cardle Faller	Imprimir Promedio= SI,	Gráfico gradiente de inversión
histograma	GradInvEolica	GradInvEolica	GradInvEolica	Graficar= SI,	acumulado eólica adicional
histograma	GradInvEolica2015	GradInvEolica2015	GradInvEolica2015	Imprimir Promedio= SI, Graficar= SI,	Grafico gradiente de inversión acumulado eólica existente
histograma	GradInvSolar	GradInvSolar	GradInvSolar	Imprimir Promedio= SI, Graficar= SI,	Gráfico gradiente de inversión acumulado solar adicional
histograma	GradinvSolar2015	GradInvSolar2015	GradInvSolar2015	Imprimir Promedio= SI, Graficar= SI,	Grafico gradiente de inversión acumulado solar existente
Comparar Valores Multiples Cron Vars	GradInvCC180, GradInvCC540, GradInvEo	Gradientes	Gradientes de inversion	Valores a Comparar= prom, Graficar= si	Grafico comparativo gradientes de inversión
histograma	Falla_3_4	Falla_3_4	Falla_3_4	Imprimir Promedio= SI, Graficar= SI,	Gráfico energía de falla tercer y cuarto escalón.
histograma	Falla_1	Falla_1	Falla_1	Imprimir Promedio= SI, Graficar= SI,	Gráfico energía de falla primer escalón.
histograma	Falla_2	Falla_2	Falla_2	Imprimir Promedio= SI, Graficar= SI,	Gráfico energía de falla segundo escalón.
histograma	Falla_3	Falla_3	Falla_3	Imprimir Promedio= SI, Graficar= SI,	Gráfico energía de falla tercer escalón.
histograma	Falla_4	Falla_4	Falla_4	Imprimir Promedio= SI, Graficar= SI,	Gráfico energía de falla cuarto escalón.
Comparar Valores Multiples Cron Vars	Exportacion, ExportacionSumidero, Int	Impo-Expo	Importaciones Exportaciones	Valores a Comparar= prom, Graficar= si	Gráfico exportaciones e importaciones.

histograma	CF	CF	CF	Imprimir Promedio= SI, Graficar= SI,	Gráfico costo futuro a inicio del paso.
Comparar Valores Multiples Cron Vars	DemandaUY, GenTotal, Exportacion, Exp	GenvsDem_c_I-X	Generacion vs Demandas	Valores a Comparar= prom, Graficar= si	Grafico comparativo generación total, importaciones, exportaciones y demanda total (en energía).
histograma	FallaPesoDemUY	FallaPesoDemUY	Peso de la falla respectoa la demanda	Imprimir Promedio= SI, Graficar= SI,	Grafico % de energía de falla total respecto a la demanda total de energía.